Американские инженеры научили двуногого робота Cassie обнаруживать низкие препятствия и нагибаться, чтобы пройти под ними. Статья опубликована на arXiv.org.
Ходячие роботы постепенно выходят из лабораторий на рынок, но пока их аппаратная часть готова к ходьбе в сложной среде намного лучше программной. Как правило, они умеют преодолевать небольшие препятствия на уровне ног, но неспособны учитывать препятствия, ограничивающие движения не снизу, а сверху. Летом группа инженеров из Калифорнийского университета в Беркли под руководством Кушиля Срината (Koushil Sreenath) представила планировщик движений для четвероногих роботов, позволяющий им самостоятельно оценивать объекты перед собой и перепрыгивать, если их высота не слишком большая, причем с учетом ограничений сверху.
В новой работе они решили немного иную задачу и на принципиально другой платформе: проход под препятствиями с помощью двуногого робота Cassie. Поскольку он использует динамическую походку, эта задача сложнее, чем на изначально устойчивых четвероногих роботах. Инженеры описали робота в качестве подпружиненного обратного маятника. Такой тип модели уже использовался в других роботах, например, Salto, но авторы новой работы добавили в модель переменную высоту маятника.
В верхней части робота установлена камера глубины, с помощью которой он размечает пространство перед собой на воксели — трехмерный аналог пикселей. На основе трехмерной карты препятствий робот строит и двумерную, составленную из пикселей размером 0,5 метра. В зависимости от заполненности вокселей, карта размечается на свободные и занятые участки, а также те, в которых есть преодолимое препятствие. Такое препятствие должно располагаться на высоте от 0,7 до 1 метра — это минимальная и максимальная высота робота.
Во время движения робот управляется тремя планировщиками. Глобальный получает от человека конечную точку, в которую нужно прийти, и строит упрощенный маршрут по 2D-карте. Локальный получает от глобального промежуточные точки и строит траекторию. А реативный планировщик отвечает за саму ходьбу, рассматривая только ближайшие 30 сантиметров пути и выдавая контроллеру ходьбы параметры, такие как скорость и высота.
Авторы показали ролик с несколькими тестами. Пока робот ходит во много раз медленнее, чем он технически способен, однако он действительно научился оценивать препятствия на пути и адаптировать свою высоту к ним.
Максимальные возможности Cassie недавно показали его создатели из компании Agility Robotics. Во время испытаний он смог пройти 5 километров за 44 минуты, ни разу не упав и достигнув на одном из кругов скорости 2,15 метра в секунду.
Григорий Копиев
Каждая из ног способна удерживать вес в 2,5 раза больше веса всего робота
Швейцарские инженеры разработали четвероного робота Magnecko с магнитными ступнями. Он способен ходить по стенам и потолку из ферромагнитных материалов, сообщает издание New Atlas. При поддержке Angie — первого российского веб-сервера Промышленные инженерные сооружения требуют регулярных инспекций технического состояния. Однако интересующие объекты зачастую располагаются в труднодостижимых для человека местах. В этом случае на помощь приходят роботы. На сегодняшний день существует множество решений для удаленного мониторинга, которые можно применять без непосредственного присутствия людей вблизи. Как правило для этих целей предполагается использовать ходячих или колесных роботов, в случае если объекты расположены вблизи поверхности, либо дроны — для работ на высоте. Они, например, запросто справляются с осмотром мостов, сотовых вышек и судов. Однако многие методы неразрушающего контроля, такие, например, как акустико-эмиссионный метод, требуют непосредственной близости инспектирующего устройства к объекту, а это не всегда достижимо в ограниченном пространстве или на лету. Инженеры из Швейцарской высшей технической школы Цюриха разработали ходячего робота Magnecko, который способен передвигаться по вертикальным и горизонтальным ферромагнитным поверхностям, надежно закрепляясь на них с помощью магнитов в ступнях. Внешне робот напоминает паука или краба. Каждая из четырех его ног имеет на конце небольшие магниты которые могут многократно намагничиваться и размагничиваться за доли секунды, при этом для поддержания намагниченного состояния электричество не требуется. В намагниченном состоянии каждая из ног способна удерживать вес в 2,5 раза превосходящий вес всего робота, поэтому Magnecko запросто может держаться на стене или потолке длительное время для изучения технического состояния инспектируемого объекта. Подпружиненные резиновые накладки на ногах помогают роботу поддерживать сцепление в процессе движения. Похожий принцип удержания на ферромагнитной поверхности применялся в роботе, разработанном корейскими инженерами, о котором мы рассказывали ранее. В текущей версии направлением движения Magnecko приходится управлять с помощью беспроводного пульта, однако переходы с горизонтальной на вертикальную поверхность и обратно робот выполняет самостоятельно. В будущем инженеры планируют добавить роботу больше автономности: он будет самостоятельно планировать маршрут и обходить препятствия. В случае если вертикальная поверхность не магнитная, то для взбирания по ней можно использовать когти. Такого робота создали австралийские инженеры, которые проанализировали движения двух видов ящериц и использовали полученные данные для настройки конфигурации ног и походки робота.