Компания Sarcos Robotics продемонстрировала применение дистанционно управляемого робота Guardian XT для обрезки деревьев в парке. Во время демонстрации робот с пилой в руке обрезал ветки на высоте, дублируя движения оператора, стоящего на земле в шлеме виртуальной реальности и костюме для захвата движений.
Одно из потенциальных применений роботов — работа в опасных для людей условиях, например, на АЭС «Фукусима» в Японии или при более привычных, но все же опасных высотных работах. Поскольку пока автономные роботы не могут выполнять многие сложные задачи, многие компании разрабатывают телеуправляемых роботов, которые «переносят» специалиста в опасное место. Долгие годы для этого использовали пульты с кнопками, джойстиками и другими привычными компьютерным органами управления, но с ними специалисту приходится адаптировать свои навыки, что влияет на время подготовки к работе и потенциально на ее качество. В последнее время инженеры все чаще внедряют в своих роботов возможность экзоскелетного управления, при котором специалист выполняет работу привычным образом, двигая руками, а робот повторяет его движения. В части из таких роботов также реализована обратная связь, благодаря которой человек чувствует сопротивление в руках.
Sarcos Robotics, выпускающая как классические экзоскелеты для расширения возможностей тела, так и телеуправляемых роботов с экзоскелетным управлением, в конце 2020 года представила новую модель и теперь продемонстрировала пример ее использования. Разработка представляет собой человекоподобного робота с руками и головой, закрепленного на люльке автовышки. В голове робота установлены две камеры, образующие стереопару. Особенность робота заключается в том, что сегменты его рук, расстояние между глазами и другие размеры немного больше человеческих, но пропорциональны им, поэтому управление получается естественным.
Для демонстрации работы компания решила выбрать одну из работ, связанную с высотой — обрезку веток деревьев в парке. Робота с моторизованной пилой в руке разместили рядом с деревом, подняли на нужную высоту и передали под управление оператора. Он управлял движениями робота, используя VR-шлем, контроллеры в руках и набор датчиков, закрепленных на руках. Компания называет систему своей проприетарной разработкой, но в ролике можно увидеть, что оператор использует систему захвата движений от Xsens, в реальном времени составляющую 3D-модель тела с помощью гироскопов, акселерометров и магнетометров. Двигая руками и активируя пилу нажатием на кнопки, оператор смог отрезать нужные ветки на дереве, не поднимаясь на опасную высоту.
Sarcos Robotics — не единственная компания, разрабатывающая роботов с экзоскелетным управлением. Например, в прошлом году корейская NAVER LABS представила робота, который не только дублирует движения человека, но и может обучаться на них для автономной работы.
Григорий Копиев
Для движения ему достаточно одного актуатора
Инженеры разработали миниатюрного робота CurveQuad массой чуть больше 10 грамм. Его гибкий корпус деформируется за счет изогнутых складок и позволяет роботу продвигаться вперед, а также поворачивать, используя для этого только один актуатор. Разработчики продемонстрировали способность CurveQuad автоматически двигаться в направлении источника света, определяя его положение с помощью встроенных фотоэлементов. Текст доклада с описанием робота опубликован в рамках конференции IROS 2023. При поддержке Angie — первого российского веб-сервера Интерес инженеров к разработке миниатюрных роботов связан возможностью выполнять задачи в условиях ограниченного пространства. Например, миниатюрных роботов предлагают использовать для внутренней диагностики механизмов без их разборки, для разведки, и для обследования разрушенных в результате стихийных бедствий зданий в поисках выживших людей. Однако разработка роботов сантиметрового масштаба — непростая задача и ее решение требует множества конструктивных компромиссов. Более сложная походка, например, может добавить роботу проворности, однако одновременно с этим приведет к росту числа степеней свободы конечностей, а значит к увеличению количества используемых актуаторов. Это, в свою очередь, оборачивается усложнением конструкции, увеличением размеров, массы и энергопотребления. Одним из решений этой проблемы могло бы стать применение в конструкции элементов оригами или киригами. Складки упругого материала, выполненные с дополнительным изгибом, позволяют накапливать дополнительную механическую энергию, чем можно воспользоваться, чтобы сократить число актуаторов, необходимых для приведения робота в движение. Такой подход выбрали инженеры под руководством Синтии Сун (Cynthia Sung) из Университета Пенсильвании. Они создали миниатюрного робота под названием CurveQuad, который благодаря изогнутым складкам в конструкции оказался способен передвигаться с помощью всего лишь одного актуатора. Масса робота составляет 10,9 грамм, а ключевая деталь его корпуса представляет собой тонкую прямоугольную пластину из PET-пластика (полиэтилентерефталат) размером 80 × 55 миллиметров. В ней с помощью лазера выполнены прорези в виде последовательно расположенных полукругов, образующих паттерн в форме двух параллельных дуг с каждой стороны пластины, симметрично расположенных относительно центра. Материал в этих областях может легко изгибаться благодаря прорезям, создавая выпуклую и вогнутую складки. В центральной полосе обеих дуг на небольшом расстоянии друг от отдруга закрепляются концы двух «сухожилий» — тяг, которые соединяются противоположной стороной с концами рычага, закрепленного на сервомоторе, ось которого находится в центре пластины. Сервопривод может поворачивать рычаг в диапазоне 270 градусов, при этом «сухожилия», соединяющие концы рычага с корпусом, стягивают его вовнутрь, приводя к изгибам. В зависимости от угла поворота рычага корпус может из плоской пластины принять симметричную куполообразную форму. В этом положении концы пластины начинают играть роль четырех конечностей робота. В промежуточных положениях рычага сервопривода корпус несимметрично деформируется по диагонали. При этом передняя «конечность» приподнимается над поверхностью, а задние смещаются друг относительно друга. Из-за возникающей между ними разности в силах трения в этот момент корпус робота смещается вперед. Если затем такую же деформацию выполнить в противоположную сторону, то робот сделает второй шаг с помощью второй «ноги». Регулируя с помощью угла поворота рычага величину деформации, а следовательно и длину шага слева и справа можно управлять направлением движения робота CurveQuad. https://www.youtube.com/watch?v=RnSHG5F2Iek Для демонстрации возможности управления роботом с помощью обратной связи, инженеры установили на углах корпуса четыре фотоэлемента. Алгоритм сравнивает сигналы, полученные от сенсоров с левой и правой сторон, и в зависимости от того, с какой стороны сигнал больше, выбирает походку, которая поворачивает робота в этом направлении. В результате в каком бы положении робот ни находился изначально, он разворачивается на источник света и начинает двигаться в его направлении. В своей следующей работе инженеры планируют сосредоточиться на взаимодействии между несколькими роботами CurveQuad. Для этого они планируют добавить им возможность общаться друг с другом, чтобы роботы могли выполнять задачи сообща, например, вместе обследовать окружающую территорию. А вот другому микророботу, созданному группой американских и китайских инженеров, для передвижения не нужны сервомоторы. Вперед он движется под действием колебаний встроенной в его корпус пьезоэлектрической пленки, а повороты совершает за счет изменения силы трения между поверхностью и электростатическими площадками на концах передних ног.