Физики проследили за распадом W-бозонов на детекторе ATLAS Большого адронного коллайдера и сравнили темпы, с которыми в этом процессе рождаются таоны и мюоны. Оказалось, что тех и других частиц образуется поровну в пределах ошибки измерений — это согласуется с аксиомой Стандартной модели о лептонной универсальности и устраняет несогласие с теоретическим прогнозом, которое наблюдалось в подобном анализе восемь лет назад. Статья опубликована в журнале Nature Physics.
В Стандартной модели лептонами называются фундаментальные частицы с полуцелым спином, не участвующие в сильных взаимодействиях. Среди лептонов выделяют три поколения, каждое из которых состоит из электрически заряженной частицы и ее нейтрального напарника — нейтрино. К первому поколению вместе со своим типом нейтрино относится электрон, ко второму — более массивный мюон, к третьему — еще более тяжелый таон.
Согласно нынешним представлениям, имеет место лептонная универсальность — каждое из поколений частиц участвует в электрослабых взаимодействиях по одному и тому же механизму, то есть с точки зрения этих процессов следующее поколение лептонов является утяжеленной копией предыдущего.
Удобный способ проверить это утверждение — наблюдать за распадами W-бозонов — электрически заряженных и массивных переносчиков слабого взаимодействия. Если постулат Стандартной модели о лептонной универсальности справедлив, то W-бозон с почти одинаковой вероятностью (с небольшими поправками из-за разных масс продуктов распада) распадается на каждую из трех лептонных пар — это означает равенство темпов рождения электронов, мюонов и таонов вместе с их типами нейтрино (или соответствующих античастиц, в зависимости от заряда W-бозонов).
Для электронов и мюонов эти темпы уже сравнивали на экспериментах LEP, LHCb и ATLAS — экспериментальный результат совпал с прогнозами Стандартной модели с точностью до процента. Однако в наиболее точном до недавнего времени эксперименте с участием таонов этих частиц по сравнению с мюонами зарегистрировали больше, чем ожидалось — тогда отклонение от теоретического значения превысило стандартную ошибку измерений. Кроме того, в недавних работах сообщается об указаниях на нарушение лептонной универсальности для электронов и мюонов на уровне значимости до трех стандартных отклонений.
Физики коллаборации ATLAS при участии Андреаса Хукера (Andreas Hoecker) из ЦЕРН уточнили темпы рождения мюонов и таонов в распадах W-бозонов на одноименном детекторе Большого адронного коллайдера. Для анализа они использовали данные протон-протонных столкновений с энергией 13 тераэлектронвольт в системе центра масс, которые детектор собирал с 2015 по 2018 год.
В качестве сигнального процесса выступало рождение пар из t-кварка и его антикварка, которые затем распадались на W-бозоны и b-кварки. W-бозоны, в свою очередь, претерпевали распады на мюоны и таоны вместе с соответствующим типом нейтрино. Тяжелые таоны же, не успев долететь до детектора, также распадались на более легкий мюон и нейтрино. Таким образом, детектор регистрировал сигнальные мюоны двух типов: первичные — то есть родившиеся в распаде W-бозона, и вторичные — родившиеся при распаде таона.
Из-за вторичных мюонов в среднем детектор измерял меньший поперечный (по отношению к оси детектора) импульс частиц, чем если бы среди них были только первичные — вместе с моделированием фоновых процессов это позволило исследователям оценить частоту регистрации первичных и вторичных мюонов и, исходя из этого, сравнить вероятности распада W-бозона на второе и третье поколение лептонов.
С учетом систематических и статистических погрешностей анализа, относительная скорость производства таонов по сравнению с мюонами составила 0,992±0,013 — в пределах ошибки это сходится с предсказанием Стандартной модели, согласно которому эта величина должна быть равна единице с точностью порядка десятитысячных.
Авторы отмечают, что анализ позволил не только разрешить ранее наблюдавшееся несоответствие между теорией и экспериментом и подтвердить лептонную универсальность для старших поколений лептонов в данном типе распадов, но и примерно вдвое улучшить точность измерений по сравнению с предыдущими работами.
От редактора
В исходной версии заметки сообщалось, что исследование опубликовано в Nature. На самом деле статья вышла в Nature Physics.
Ранее мы рассказывали о том, как лептонную универсальность поставили под сомнение, наблюдая за распадами B-мезонов, и о том, как аномалию в магнитном моменте мюона удалось измерить со значимостью 4,2σ.
Николай Мартыненко
Результат получила коллаборация Belle II
Выход за пределы Стандартной модели — важнейшая поисковая задача физиков, занимающихся элементарными частицами. В первую очередь они ориентируются на существующие крупные аномалии, например, темную материю. Множество расширений Стандартной модели опирается на введение новых невидимых бозонов, которые могли бы стать такой материей. Один из процессов, где такие бозоны могли бы себя проявить — это распад тау-лептона. Физики знают, что этот тяжелый лептон распадается на электрон или мюон и соответствующий набор нейтрино. Ряд теорий, однако, предсказывает альтернативный канал распада, в котором вместо нейтрино рождается темный бозон. Проверить эту гипотезу вызвались физики из коллаборации Belle II, работающие на лептонном коллайдере SuperKEKB. В ходе измерительной кампании, длящейся с 2019 по 2020 год, ученые собрали данные о более, чем 57 миллионах событий, в которых сталкивающиеся электроны и позитроны превращаются в таон-антитаонные пары при энергии в системе центра масс, равной 10,58 гигаэлектронвольта. Интегральная светимость эксперимента составила 62,8 обратного фемтобарна. Физиков интересовали коэффициенты ветвления процессов с участием темных бозонов, деленные на соответствующие коэффициенты для известных процессов. Авторы протестировали собранные данные для бозонов в диапазоне масс от 0 до 1,6 гигаэлектронвольта и не нашли подтверждения этой гипотезе. Результат работы физиков накладывает новые ограничения на отношения коэффициентов ветвления: (6−36)×10−3 для распада на электрон и (3−34)×10−3 для распада на мюон с доверительным интервалом 95 процентов. Японский коллайдер SuperKEKB — это модернизированная версия его предшественника, коллайдера KEKB. Он был снова запущен после семи лет ремонта в 2018 году. С тех пор на нем было получено множество новых результатов, например, уточненное время жизни очарованного лямбда-бариона.