Недавно открытый транснептуновый объект 2014 UN271, который считался возможно самым крупным телом Облака Оорта из когда-либо обнаруженных, оказался огромной кометой. К такому выводу астрономы пришли, обнаружив у него кому. Циркуляр опубликован на сайте Центра малых планет.
Об открытии 2014 UN271 было объявлено 19 июня 2021 года, оно было сделано в рамках обзора DES (Dark Energy Survey). Первоначальные наблюдения за объектом показали, что его текущий орбитальный период составляет 3 миллиона лет, а афелий его орбиты достигает внутренней части облака Оорта. Предварительная оценка размеров 2014 UN271 позволяла предположить, что это достаточно крупный объект, возможно карликовая планета.
Новые наблюдения за объектом, проведенные 22 июня 2021 года при помощи 1-метрового телескопа Sutherland наземной сети LCOGT, показали, что он проявляет активность и обладает немного асимметричной комой, что характерно для комет. На момент наблюдений 2014 UN271 находился на расстоянии 20,18 астрономических единиц, яркость была оценена в 19,8 звездной величины, что несколько больше, чем предсказывалось. Наличие комы подтверждается и данными наблюдений телескопа SkyGems в Намибии.
В связи с этим Центр малых планет 24 июня 2021 года переклассифицировал объект как комету, теперь она имеет обозначение C/2014 UN271 (Бернардинелли-Бернштейн). Ожидается, что в начале 2031 года комета пройдет свой перигелий, находящийся на расстоянии примерно 10,5 астрономических единиц от Солнца. Ученые надеются провести ряд наблюдений за ней, так как они могут дать уникальную информацию о свойствах и составе тел, оставшихся со времен формирования Солнечной системы.
Ранее мы рассказывали о том, как первая в истории межзвездная комета оказалась реликтом экзопланетной системы, который никогда не приближался к звездам.
Александр Войтюк
Они находятся в маломассивных рентгеновских двойных системах
Астрономы на основе наблюдений за пульсаром PSR J1023+0038 определили механизм переключения переходных миллисекундных пульсаров между режимами активности. Предполагается, что он связан с взаимодействием между пульсарным ветром и внутренней частью аккреционного диска, а также с выбросами вещества. Статья опубликована в журнале Astronomy&Astrophysics. После рождения нейтронные звезды обладают очень высокой скоростью вращения, которая постепенно уменьшается со временем. Однако астрономам известны миллисекундные пульсары, представляющие собой быстровращающиеся нейтронные звезды, которые находятся в маломассивных рентгеновских двойных системах и раскручиваются до миллисекундных периодов вращения за счет аккреции вещества звезды-компаньона. Этот эволюционный путь состоит из нескольких стадий, одна из которых представлена переходными миллисекундными пульсарами — очень редкими и плохо изученными объектами. Они могут находиться в двух состояниях: радиопульсар (объект порождает импульсы радиоволн) и активный режим (нейтронная звезда ярко излучает в рентгеновском диапазоне, аккрецируя вещество из диска вокруг нее). В активном режиме ученые выделяют два состояния — высокий уровень активности, который возникает чаще всего и характеризуется пульсациями рентгеновского, ультрафиолетового и оптического излучения от пульсара, и низкий уровень активности, когда пульсаций нет. Астрофизиков очень интересует, каким образом эти режимы возникают и почему непредсказуемо меняются. Группа астрономов во главе с Марией Кристиной Бальо (Maria Cristina Baglio) из Нью-Йоркского университета в Абу-Даби опубликовала результаты мультиволновых наблюдений за переходным миллисекундным пульсаром PSR J1023+0038, проведенных в июне 2021 года при помощи наземных и космических телескопов, таких как NuSTAR, XMM-Newton, «Хаббл», VLT, ALMA, VLA, NTT и FAST. PSR J1023+0038 был обнаружен в 2007 году как пульсар с периодом вращения 1,69 миллисекунды, обращающийся вокруг маломассивной звезды-компаньона (около 0,2 массы Солнца) за 4,75 часа. В 2013 году он перешел в режим высокого уровня активности, демонстрируя признаки формирования аккреционного диска. Данные наблюдений позволили астрономам построить физическую модель переключения миллисекундного пульсара между режимами активности. Во время высокого уровня активности существует ударная волна между ветром от пульсара и внутренним аккреционным потоком, где возникает большая часть рентгеновского излучения, а также рентгеновские, ультрафиолетовые и оптические пульсации. При этом самая внутренняя область усеченного, геометрически тонкого аккреционного диска, заменяется радиационно неэффективным, геометрически толстым потоком, а падающее на пульсар вещество втягивается в магнитное поле и ускоряется, образуя компактный джет из плазмы, которая выбрасывается наружу. Переход в режим низкого уровня активности инициируется дискретными выбросами вещества поверх джета вдоль оси вращения пульсара, что приводит к угасанию пульсаций. В таком состоянии пульсарный ветер все еще способен проникнуть в аккреционный диск и инициировать возникновение джета. Затем поток вещества из аккреционного диска может вновь заполнить область вблизи пульсара и он перейдет высокий режим активности. Ранее мы рассказывали о том, как ученые впервые увидели гамма-затмения пульсаров-«черных вдов» и напрямую измерили скорость собственного движения пульсара.