Физики провели точное измерение длин волн переходов 2S1/2−2P1/2 и 2S1/2−2P3/2 у литиеподобных ионов углерода C3+, разогнанных до релятивистских скоростей в накопительном кольце. Для этого они направляли ультрафиолетовое излучение навстречу ионному пучку и детектировали последующую флуоресценцию ионов, причем для настройки на резонанс они меняли не длину волны излучения, а скорость пучка. Работа опубликована в Scientific Reports.
Спектроскопия ионов, разогнанных до скоростей, близких к скорости света, сопряжена с определенными трудностями. В первую очередь это связано с тем, что ионы не находятся в одном месте в форме газа, как это обычно бывает в классической спектроскопии, а быстро летят по накопительному кольцу. Другая сложность связана с возникновением сильнейшего допплеровского смещения длин волн, а также искажений, возникающих вследствие преобразований Лоренца.
Существует, однако, еще одна сложность. Для точных экспериментов с релятивистскими пучками (не только спектроскопических) они должны быть достаточно холодными, что понимается как малый разброс по импульсам ионов в пучке. На данный момент самый распространенный метод охлаждения быстрых ионов в накопительных кольцах - это метод электронного охлаждения, который заключается в подмешивании к пучку «горячих» ионов пучка «холодных» электронов. Предполагается, что лазерное охлаждение будет более эффективно для этих целей, однако для этого метода необходимо знание точных значений длин волн переходов в ионах. При этом для некоторых ионов, в частности, для литиеподобных ионов углерода C3+, существуют расхождения в литературных данных.
Чтобы разрешить эти противоречия, а также чтобы протестировать системы подвода и детектирования излучения в экспериментальном накопительном кольце, установленном в Центре по изучению тяжелых ионов имени Гельмгольца в Дармштадте, группа физиков из Германии и Китая под руководством Даньяла Винтерса (Danyal Winters) провела серию экспериментов по уточнению длин волн переходов 2S1/2−2P1/2 и 2S1/2−2P3/2 у ионов 12C3+. Ионы разгонялись в накопительном кольце до скоростей, равных почти половине скорости света, и охлаждались с помощью электронного охладителя. В отдельной области кольца ионы сталкивались с лазерным излучением с длиной волны 257 нанометров, а переизлученные фотоны попадали в систему регистрации.
Особенность эксперимента заключалась в том, что точное значение скорости ионов зависело от напряжения, подаваемого на электронный охладитель. Это позволяло совершать тонкую настройку длины волны лазера в системе центра масс ионов, поскольку из-за допплеровского сдвига она смещается в коротковолновую область согласно фактору Лоренца. Вблизи резонансов авторы меняли напряжение в охладителе с шагом в один вольт, сканируя исследуемую область три раза. По числу отсчетов на детекторе ультрафиолетового излучения они делали выводы о интенсивности поглощения и последующей флуоресценции.
Таким образом, меняя напряжение на электронном охладителе, физики связывали его через ток со скоростью ионов и, следовательно, с длиной волны в системе центра масс. В результате длины волн переходов на уровни 2P1/2 и 2P3/2 составили 155,0779(12)sys(1)stat и 154,8211(12)sys(2)stat нанометров соответственно.
Стоит особо отметить большую работу по учету всевозможных погрешностей, проведенных в данном эксперименте. В результате аккуратного их учета физики пришли к выводу, что измеренные длины волн находятся в хорошем согласии с данными, полученными ранее в экспериментах по интерферометрии и спектроскопии плазмы, равно как и с теоретическими предсказаниями. Они отметили также, что несколько улучшений в экспериментальной установке и дополнительные калибровки позволят улучшить точность эксперимента в будущем.
Лазерная спектроскопия в последние годы существенно повысила точность физических экспериментов. Мы уже рассказывали, как с ее помощью уточняли размер протона и альфа-частицы.
Марат Хамадеев
Пока эти результаты вызывают сомнения
Физики из Южной Кореи обнаружили у апатита свинца, в котором часть атомов свинца замещена медью, сверхпроводящие свойства при комнатной температуре. Ученые утверждают, что полученный методом твердотельного синтеза материал — первый сверхпроводник при комнатной температуре и атмосферном давлении. Температура перехода разрушения сверхпроводящего состояния достигает в нем 127 градусов Цельсия, пишут исследователи в препринтах (1, 2) на arXiv.org. Впрочем, некоторые физики уже выразили сомнения в обоснованности опубликованных результатов. Сверхпроводимость — эффект, при котором у некоторых материалов электрическое сопротивление становится нулевым, — обычно наблюдается при экстремально низких температурах. Лишь в конце XX века удалось получить материалы, обладающие высокотемпературной сверхпроводимостью. Первым материалом с критической температурой (Тс) выше точки кипения азота (-195,8 градуса Цельсия) был оксид итрия-бария-меди. Только в 2010-х годах были открыты новые типы сверхпроводников, способных сохранять свои свойства при температурах, более близких к комнатной. При сверхвысоких давлениях (более миллиона атмосфер) сверхпроводящие свойства возникают и у гидридов многих элементов, например, у сероводорода. Недавно физики подтвердили наличие сверхпроводимости гидрида лантана LaH10 при −23 градусах Цельсия. Уже в этом году американские ученые получили сверхпроводимость гидрида лютеция, легированного азотом, при комнатной температуре и умеренно экстремальном давлении. Впрочем, другие группы воспроизвести их результаты пока не смогли. Группа корейских физиков под руководством Ли Сукбэ (Sukbae Lee) из Центра исследований квантовой энергии обнаружила, что в материале на основе апатита свинца Pb10-xCux(PO4)6O (доля x составляет от 0,9 до 1,1) сверхпроводящие свойства наблюдаются при комнатной температуре и атмосферном давлении, то есть без необходимости сжимать образец до сотен миллионов атмосфер. Материал LK-99 получен с помощью твердотельного синтеза в герметичной трубке, вакуумированной до 1,3 × 10-6 атмосфер. Анализ полученного порошка LK-99 при помощи рентгеновской дифракции показал, что величина постоянной его кристаллической решетки на 0,48 процентов меньше, чем у апатита свинца. Ученые связали это изменение с частичным замещением атомов свинца на более компактные по размеру атомы меди. Авторы исследования полагают, что это привело к возникновению внутренних механических напряжений в кристалле, которые в конечном итоге и стали причиной сверхпроводимости. Наличие сверхпроводимости в материале ученые подтвердили, наблюдая левитацию образца в магнитном поле за счет эффекта Мейснера, а также исследуя зависимость удельного сопротивления вещества от температуры. Физики определили, что критическая температура (Тс), при которой образец LK-99 терял сверхпроводящие свойства, составляет от 104 до 127 градусов Цельсия. Ниже этой температуры ученые выделили несколько характерных участков. В диапазоне до примерно 60 градусов Цельсия удельное сопротивление практически равнялось нулю с незначительными шумовыми сигналами. При более высоких температурах наблюдался плавный рост удельного сопротивления. Авторы интерпретировали этот рост как локальные нарушения сверхпроводимости в отдельных областях поликристаллического образца. Если результаты корейских физиков подтвердятся, LK-99 может стать первым веществом со сверхпроводимостью при комнатной температуре и атмосферном давлении. Впрочем, исследования сверхпроводимости при комнатной температуре часто вызывают вопросы у научного сообщества, даже если добираются до публикации в рецензируемых журналах. Например, после проверок в 2022 году из Nature отозвали статью американских исследователей, которые нашли сверхпроводимость при 17 градусах Цельсия в смеси сероводорода, метана и водорода. Технические вопросы, из-за которых отозвали статью о сверхпроводимости углеродистого сероводорода, возникли и к этой работе. Так, сомнения в обоснованности выводов корейских ученых высказал профессор химического факультета МГУ Евгений Антипов, который вместе с Сергеем Путилиным открыл в 1993 году новое семейство ртутьсодержащих сверхпроводящих купратов. Один из них — HgBa2Ca2Cu3O8+x — на настоящий момент имеет рекордную подтвержденную на данный момент критическую температуру, −138 градусов Цельсия. В разговоре с N + 1 химик прокомментировал открытие коллег: «Я не думаю, что эта статья выйдет в каком-либо серьезном журнале, потому что она не отвечает принятым стандартам. У меня вызывает большие сомнения возможность реализации сверхпроводимости в соединении с такой формулой. Это оксофосфат двухвалентного свинца, а двухвалентный свинец отличается тем, что у него свободные электроны локализованы, они не могут переходить в зону проводимости — а значит они будут локализованы на катионах свинца». Вопросы у Антипова вызвала и возможность замещения двухвалентного свинца на двухвалентную медь в том синтезе, который проводили корейские ученые: «Представленные данные не убеждают в возможности такого замещения, так как в образце присутствует примесь сульфида меди Cu2S. С точки зрения кристаллохимии это выглядит не очень обоснованно, а с точки зрения эксперимента — они получили образец с примесями, при этом примеси там много. Поэтому говорить, что медь находится в позиции свинца, когда она присутствует в виде примесей — не обосновано». Физики продолжают изучать различные вещества и способы достичь высокотемпературной сверхпроводимости. Например, ранее мы писали, как сверхпроводимость ищут даже в радиоактивных веществах. О том как механическое напряжение помогает получить состояние сверхпроводимости в графене читайте в нашем материале «Тонко закручено».