Немецкие инженеры научили человекоподобного робота LOLA помогать себе руками для стабильной ходьбы по сложному рельефу — например, упираться руками в дверной проем или придерживаться за стены. Видео с испытаниями опубликовано на YouTube-канале Мюнхенского технического университета, подробности о разработке авторы рассказали в интервью IEEE Spectrum.
Практически все двуногие человекоподобные роботы во время ходьбы используют для активной стабилизации лишь ноги. Применяя динамическую или квазистатическую походку, они принимают высокоуровневую команду на движение в заданную точку и рассчитывают низкоуровневые команды для моторов, которые позволят реализовать это движение. У многих двуногих роботов также есть подвижные руки, но, как правило, они либо не используют их во время стабилизации, либо используют лишь для смещения центра масс. Люди же во время движений используют многоточечную контактную стабилизацию и поддерживают себя любыми доступными частями тела.
Инженеры из Мюнхенского технического университета, разработавшие человекоподобного робота LOLA и уже более десяти лет использующие его в качестве платформы для отработки алгоритмов, показали новую способность, нетипичную для таких роботов: использование рук для активной контактной стабилизации. Робот имеет классическую конструкцию с руками, ногами и головой. У него есть 26 активных суставов, приводимых в движение электромоторами. В голове у робота установлена пара камер глубины, позволяющая ему составлять объемную карту окружающего пространства.
Новый алгоритм использует проактивный, а не реактивный подход в многоточечной контактной стабилизации — то есть робот заранее просчитывает движения руками и точки контакта рук с окружающими объектами. Низкоуровневая часть алгоритма стабилизации способна учитывать различные внешние возмущения или ошибки локализации, но не способна в реальном времени инициировать поддерживающее движение рукой, которое не было запланировано заранее. Кроме того, в текущем виде робот использует заранее определенные инженерами точки опоры для ног и рук.
Тем не менее уже в текущей реализации LOLA может составлять карту окружающего пространства и размечать на нем зоны, соответствующие полу, стенам и отдельным объектам. В будущем разработчики также планируют научить робота учитывать другие свойства поверхностей, важные для использования их в качестве опоры: шероховатость, мягкость и другие.
Разработчики показали текущий уровень работы алгоритмов стабилизации и многоточечной контактной стабилизации на видео. В ролике можно увидеть разные сценарии, в одном из которых робот потерял равновесие в ногах из-за съехавшей вбок пластины под ногой, но смог удержаться в вертикальном положении именно благодаря поддержке руками.
Ранее американские инженеры научили небольшого робота динамически поддерживать себя рукой. При падении он анализирует расположение стены и своего тела, и выдвигает руку так, чтобы упереться ей в стену и не упасть.
Григорий Копиев
Он может сам подключаться к зарядной станции
Инженеры разработали дешевое решение для автономной подзарядки электрических мультикоптеров. Система под названием AutoCharge представляет собой зарядную станцию с коннектором, оснащенным электромагнитом. Дрон также оснащается магнитным коннектором, размещенном на конце гибкого шнура. При сближении дрона со станцией, коннекторы притягиваются друг к другу, обеспечивая надежное электрическое соединение на время зарядки батареи. Препринт статьи опубликован на сайте arxiv.org. На сегодняшний день мультикоптеры — наиболее популярный тип беспилотных летательных аппаратов. Однако при всех достоинствах, дроны, построенные по этой схеме, обладают ключевым недостатком, который заключается в относительно невысокой продолжительности полета. Для большинства существующих моделей оно не превышает получаса. Увеличение количества батарей на борту приводит к утяжелению дрона и снижению массы полезной нагрузки, которую он способен нести. Например, квадрокоптер US-1, созданный компанией Impossible Aerospace способен на одном заряде провести в воздухе целых два часа и пролететь около 75 километров, но его собственная масса при этом составляет 7,1 килограмма, а полезная нагрузка массой всего лишь 1,3 килограмма снижает время полета со 120 минут до 78. Другой подход к увеличению времени полета дрона — использовать системы автоматической замены или подзарядки батарей в формате зарядных станций, расположенных на пути беспилотника. Однако существующие на сегодняшний день решения (гнезда дронов) не универсальны, имеют сложную конструкцию и высокую стоимость. Кроме того, от мультикоптера обычно требуется точная посадка на платформу, что не всегда легко реализовать на открытом воздухе. Группа инженеров под руководством Джузеппе Лоянно (Giuseppe Loianno) из Нью-Йорского университета разработала простое и дешевое решение AutoCharge для автономной подзарядки дронов любого размера. Оно представляет собой небольшую док-станцию на верхней части которой располагается электрический коннектор, совмещенный с электромагнитом. К дрону крепится гибкий шнур, один конец которого подсоединен к схеме питания батареи дрона, а на другом конце располагается коннектор с постоянным магнитом. Когда батарея беспилотника разряжается ниже порогового значения, он подлетает к зарядной станции. Свободно свисающий на конце шнура магнитный коннектор дрона оказывается в зоне действия магнитного поля электромагнита, встроенного в коннектор на док-станции, притягивается к нему и происходит их стыковка. Правильному и надежному соединению также способствуют отверстия, расположенные на коннекторе док-станции и выступающие штифты на коннекторе дрона. После успешного соединения электромагнит, встроенный в док-станцию, отключается и начинается зарядка батареи дрона. В этот момент дрон может приземлиться рядом или продолжать выполнять задачи в воздухе. После восполнения заряда батареи беспилотник может продолжать полет. Для этого он механически отсоединяет свой коннектор от зарядной станции, на которой с небольшой задержкой снова включается электромагнит, для выполнения следующей стыковки. По словам разработчиков, такая схема зарядки проста, подходит для дронов разных размеров и не требует использования сложных алгоритмов и механизмов для точной посадки, а стоимость док-станции с выполненным с помощью 3D печати корпусом не превышает 50 долларов. Длина шнура может подбираться в зависимости от задач. Например, если дрону не требуется находиться в воздухе во время зарядки, шнур может быть коротким. Это снижает массу дрона и повышает эффективность зарядки, а также почти не влияет на точность управления в полете. https://www.youtube.com/watch?v=6xYvI-qIe3M&t=11s Разработчики провели эксперимент, в ходе которого тестовый квадрокоптер действовал полностью автономно. После полетов по заданной траектории и уменьшения напряжения батареи до минимума дрон подключался к зарядной станции. Зарядив батарею, беспилотник отсоединял коннектор и вновь продолжал полет до очередного разряда. Эксперимент продолжался в течение десяти часов. В будущем инженеры планируют добавить возможность использовать систему зарядки AutoCharge без предварительного знания о местоположении зарядной станции, полагаясь лишь на бортовые камеры дрона для ее визуальной локализации. В случае если необходимо выполнять полеты дольше нескольких часов, дроны-квадрокоптеры оснащают гибридной силовой установкой. В такой схеме беспилотник использует электромоторы для вращения винтов, но энергия для них вырабатывается двигателем внутреннего сгорания. Например, в 2018 году китайские инженеры продемонстрировали полет шестироторного мультикоптера, оснащенного ДВС и аккумуляторами, в ходе которого дрон продержался в воздухе 7 часов и 17 минут.