Выбросы CO2 из магм в нижней части земной коры запустили позднее маастрихтское потепление, предшествовавшее мел-палеогеновому вымиранию. К такому выводу пришли ученые из Нью-Йоркского университета, измерив концентрации диоксида углерода в расплавных включениях в ранних базальтах Деканских траппов. Исследование опубликовано в Proceedings of the National Academy of Sciences.
На протяжении истории Земли длительная вулканическая дегазация часто приводила к глобальным климатическим сдвигам и экологическим катастрофам. В геологической летописи это иллюстрируют эпизоды формирования крупных магматических провинций, внутриплитных областей внедрения огромных объемов магмы (до миллиона кубических километров) за короткий отрезок времени (первые миллионы лет). Излияние лав из таких провинций происходило синхронно с массовыми вымираниями фанерозоя. Извержение Сибирских траппов 252 миллиона лет назад считают триггером пермского вымирания, а образование Центрально-Атлантической магматической провинции 201 миллион лет назад — триасово-юрского.
Потепление, охватывающее 300 тысяч лет перед мел-палеогеновым вымиранием 66,05 ± 0,08 миллиона лет назад, известно как позднее маастрихтское потепление. В это время температура Мирового океана выросла на 3-4 градуса, что отражено в палеотемпературных записях в морских отложениях. Потепление совпадает с началом излияния Деканских траппов на полуострове Индостан. Это крупная магматическая провинция сложена базальтовыми покровами общей мощностью до двух километров. За пять миллионов лет из трещин вытекло по разным оценкам от 0,6 до 1,3 × 106 кубических километров лавы. Свежеобразованные траппы покрывали территорию в 1,5 миллиона квадратных километров, но за десятки миллионов лет эрозионные процессы урезали площадь провинции до размера Ханты-Мансийского автономного округа.
Группа геологов под руководством Андреса Наваа (Andres Navaa) из Нью-Йоркского университета решила проверить гипотезу «спускового крючка»: мог ли ранний деканский магматизм вызвать позднее маастрихтское потепление. Для ответа на поставленный вопрос исследователи измерили концентрации CO2 в расплавных включениях в кристаллах оливина и количественно оценили выбросы диоксида углерода во время раннего деканского магматизма. Под ранним магматизмом исследователи подразумевают изверженные до мел-палеогеновой границы лавы, которые составляют 25 процентов всего объёма Деканских траппов.
Углекислый газ — один из главных летучих компонентов магматических расплавов. Но оценка объемов его выброса из базальтовых магм затруднена, поскольку насыщение CO2 и дегазация начинаются на глубинах, близких к границе Мохоровичича. Единственный источник информации о летучих компонентах в родоначальных магмах это включения расплавов. Запертые внутри кристаллов карманы магмы могут сохранять исходные объемы углекислого газа благодаря низкой скорости диффузии CO2.
Для определения концентрации углекислого газа в деканских магмах исследователи отобрали 43 образца базальтовой лавы в Западных Гатах. Включения расплавов в магнезиальных оливинах имели средний размер 20 микрон, одну десятую объема которых занимали пузырьки газа. Концентрации CO2 в стеклообразной застывшей части включения были измерены методом масс-спектрометрии вторичных ионов, а в пузырьках — конфокальной рамановской спектроскопии.
Газовые пузыри в расплавных включениях содержат CO2 на порядок больше (60-11740 ppm), чем стекло (19-404 ppm). Исходя из содержаний H2O и CO2 во включениях, было определено минимальное давление захвата расплавов, от 0,1 до 8 килобар. Это означает, что кристаллы оливина запирали в себе карманы магмы на глубинах до 30 километров. Однако начальные концентрации CO2 в магме, посчитанные с помощью микроэлементов Ba и Nb, указывают на более глубинную дегазацию. По мнению авторов, обогащенные CO2 магмы, вероятно, достигали насыщения углеродом у нижней границы земной коры.
Во время ранних стадий излияний Деканских траппов магматический бюджет CO2 не был постоянным. Концентрации CO2 в 1 процент по массе в ранних расплавах упали до 0,3 процента в лавах, излившихся перед мел-палеогеновой границей. Предполагая, что объем Деканских траппов составляет 600 тысяч кубических километров, исследователи оценили общее количество выброшенного в атмосферу CO2 в 1000-6000 гигатонн. Эти цифры значительно ниже аналогичных оценок для Центрально-Атлантической магматической провинции (100 000 гигатонн) и Сибирских траппов из-за меньшего объема провинции на Индостане.
Рассчитанные объемы CO2 позволили пересмотреть взаимосвязь между деканским магматизмом и поздним маастрихтским потеплением. Результаты моделирования в LOSCAR (Long-term Ocean Sediment CArbon Reservoir) показали, что эмиссии CO2 во время излияний лавы недостаточно для объяснения масштабов потепления: максимальный нагрев при таком сценарии составляет 1 градус Цельсия. Однако если учесть выбросы диоксида углерода из интрузивных магм, модель хорошо описывает климатические сдвиги в 2-4 градуса в конце мелового периода.
Ранее мы рассказывали о противоречащих датировках Деканских траппов и резком похолодании на границе мел-палеогена из-за удара астероида.
Ученые предполагают, что за подобные катастрофы ответственна постоянная мерзлота на высочайших горных пиках
Геологи обнаружили в Гималаях следы гигантского обрушения, которое уничтожило одну из вершин-восьмитысячников в составе крупного массива Аннапурна. Оползень, сместивший приблизительно 23,5 кубических километра породы, произошел около 1190 года. По мнению ученых, подобные масштабные, но редкие обвалы характеризуют режим эрозии горных систем с большой крутизной склонов и высокими постоянномерзлыми пиками, и показывают, как может протекать долгосрочная топографическая эволюция высокогорных регионов. Об исследовании сообщает статья в журнале Nature. Гималаи ― самая высокая и одна из наиболее активных горных систем на Земле. Однако, несмотря на многочисленные исследования, у ученых пока нет единого мнения о том, как происходит ее развитие с точки зрения соотношения между процессами тектонического поднятия и эрозии. В частности, неясен режим разрушения самых высоких гималайских пиков. Согласно одной из точек зрения, высота гор при любой скорости тектонического подъема зависит главным образом от того, где пролегает граница питания покрывающего их ледника. Предполагается, что эффективное выветривание, которое происходит ниже этой границы, заставляет постепенно отступать вершины ледниковых цирков примерно с той же скоростью, с какой сползающий ледник углубляет дно долины. При этом вершины горной цепи постоянно оказываются на высоте около 1,5 километра над уровнем границы питания ледника. Однако такой механизм действует далеко не всегда. Так, он неприменим при описании Гималаев, где пики-восьмитысячники поднимаются над границей питания на высоту до трех километров: скорость эрозии здесь оказывается ниже, так как на больших высотах не работают циклы таяния и замерзания. Ученые предположили, что в таких условиях предел роста горных пиков обусловлен лишь механической прочностью массива, и изменение их крутизны и высоты происходит за счет оползней. К сожалению, до сих пор отсутствует систематический каталог этих явлений, способных вызвать бедствия из-за перекрытия долин гималайских рек. Поэтому трудно надежно оценить их вклад в многолетнюю эволюцию высокогорных территорий. Сейсмические наблюдения показывают, что районах, расположенных выше трехкилометровой отметки, происходит меньшей оползней, чем в более низких местностях. Это говорит о том, что либо на большой высоте действует иной механизм эрозии, либо частотно-размерное распределение оползней здесь перекошено в сторону очень крупных, но сравнительно редких событий. Свидетельство одной из подобных катастроф обнаружили Жером Лаве (Jérôme Lavé) из Университета Лотарингии и его коллеги из Непала, США и Франции. Гигантский оползень был идентифицирован исследователями в пределах Аннапурны ― одного из высочайших массивов, расположенного в центральной части Непала и принадлежащего к Главному Гималайскому хребту. Следы оползня локализуются в ледниковом цирке Сабче ― глубокой впадине поперечником около 8,5 километра у юго-западного склона пика Аннапурна IV. Цирк Сабче окаймлен чрезвычайно крутыми скалами, а дно его заполнено осадками, которые ранее были описаны как моренные или озерно-ледниковые отложения (труднодоступность района долгое время препятствовала их точному полевому описанию). Лаве и его коллеги установили, что осадки представляют собой брекчию ― породу, образованную сцементированными неокатанными обломками. Брекчия из цирка Сабче состоит из сильно фрагментированных (сантиметрового и дециметрового размера) обломков известняка в пылевидной, богатой карбонатом матрице. Мощность этих отложений превышает 400 метров, а в отдельных местах достигает километра. Цирк оказался заполнен брекчией относительно непрерывно, без каких-либо несогласий, но в ее толще ученые обнаружили внутренние зоны сдвига. Все эти особенности позволили исследователям заключить, что отложения в цирке Сабче образовались в результате единой и чрезвычайно масштабной оползневой обломочной лавины. Объем заполнившего впадину материала оценивается в 23,5 +4/−3 кубических километра. Следы этой каменной лавины исследователи нашли и за пределами цирка, в верхней части долины реки Сети ― сюда, по подсчетам, вышло около 3,5 кубических километра обломков и пыли. С учетом средней пористости брекчии 15 ± 5 процентов общий объем обрушившейся породы ученые оценили в 23,5 +3,5/−3 кубических километра, и это был крупнейший оползень, описанный в Гималаях. Измерение содержания космогенного хлора-36 (36Cl) в образцах, отобранных на поверхностных участках слоя брекчии, позволило получить дату образования этой поверхности ― 1196 год с погрешностью ± 75 лет. Кроме того, Лаве с коллегами датировали полевой шпат в образцах брекчии из внутренней зоны сдвига методом ИК-стимулированной люминесценции (IRSL) и получили несколько больший возраст события: около 1200 лет назад, минимум ― 900 лет назад. Наконец, результаты удалось уточнить с помощью радиоуглеродного анализа растительных фрагментов из зоны контакта между лавинным материалом и коренной породой в долине Сети. Он дал калиброванную дату 1190 год с погрешностью ± 26 лет. Ученые определили место мегаобвала ― северо-восточный склон цирка Сабче, рядом с пиком Аннапурна IV. Здесь выделяются скальные поверхности без существенных признаков эрозии. С помощью байесовского моделирования, основанного на расчете геомеханических характеристик пород массива Аннапурна для различных высот, исследователи получили ряд реконструкций палео-Аннапурны IV, из которых отобрали удовлетворяющие требованию стабильности склона и данным об объеме обрушившейся породы. Усредненная модель показывает, что пик палео-Аннапурны IV достигал высоты около 8100 метров, то есть был примерно на 600 метров выше современной вершины Аннапурна IV (7525 метров). Анализируя причины события, авторы исследования указывают на явную склонность Высоких Гималаев (основного хребта этой горной системы) к крупномасштабным обрушениям склонов. Такие явления, как углубление долин и интенсивное морозобойное растрескивание вблизи границы питания ледника, можно рассматривать как факторы подготовки катастрофы, так как они формируют неустойчивые зоны вокруг ледниковых цирков. Определенную роль в этом процессе играет, вероятно и ориентация залегания сланцеватых пород. Что касается триггера обрушения, то кажущееся логичным предположение о крупном землетрясении в данном случае представляется ученым сомнительным. Вблизи Аннапурны известны сильные землетрясения около 1100 года, а также в 1255 и в 1344 годах, но эти даты не совпадают с полученной для оползня в цирке Сабче. Лаве и его коллеги предположили, что за столь мощные обвалы ответственны постоянные мерзлотные условия на высочайших пиках. Они приводят к упрочению склонов и затрудняют тем самым возникновение мелких и средних оползней. Пик продолжает расти до тех пор, пока из-за гравитационной неустойчивости не окажется превышен предел механической прочности такой мерзлой породы. После этого происходит гигантский обвал. Подобный сценарий может действовать не только в Гималаях, но и в других высоких, активно растущих горных системах. Будущие исследования помогут точнее оценить вклад в эволюцию таких регионов, как Центральный Тянь-Шань, Памир, Каракорум, и установить связь между скоростью тектонического подъема и высотой крупнейших пиков над границей питания ледников. Ранее N + 1 сообщал о том, как на берегу Каспийского моря обнаружили крупнейший активный оползень на суше, и о том, что потепление вызовет в высокогорных районах Северного полушария экстремальные проливные дожди. А еще мы рассказывали, как на Эвересте, на высоте более пяти километров зоологи нашли помет манулов.