Китайские биологи описали первый известный пример горизонтального переноса генов от растения к насекомому. Оказалось, табачные белокрылки (Bemisia tabaci) присвоили себе растительный ген. Синтезируемый с помощью этого гена фермент позволяет насекомым нейтрализовать яд, призванный защищать растения, поэтому на этих насекомых-вредителей не влияют растительные токсины. Работа опубликована в Cell.
За более чем 400 миллионов лет сосуществования с травоядными животными растения научились защищаться: какие-то изменили свою морфологию (например, изменили форму листьев), другие же применили биохимические способы отражать атаки насекомых.
Фенольные гликозиды – группа соединений, состоящих из углеводного остатка и фенольной группы – одни из самых распространенных метаболитов растений, которые могут влиять на рост, развитие и поведение насекомых. Самим растениям эти соединения не опасны: они при помощи фермента малонилтрансферазы присоединяют к гликозидам малониловую группу, в результате фенольные гликозиды теряют свою токсичность.
Некоторые насекомые, однако, не испытывают негативных последствий от попадания фенольных гликозидов в их организм вместе с пищей: наоборот, они научились использовать их как питательные вещества и стимуляторы кладки яиц. Представители вида табачная белокрылка (Bemisia tabaci) – распространенные насекомые-вредители. B. tabaci питаются флоэмой растений, проводящей тканью, по которой продукты фотосинтеза – питательные вещества – поступают к корням, цветкам, плодам. Белокрылки переносят растительные вирусы и в целом сильно снижают урожайность. При этом вредители могут питаться более чем 600 видами растений – и прекрасно адаптируются к защитным механизмам всех этих видов. Большинство из этих растений как раз используют фенольные гликозиды как способ биохимической защиты. Bemisia tabaci нейтрализуют эти соединения при помощи ферментов, однако как именно им удается обойти отличающиеся друг от друга защитные приспособления стольких растений, оставалось неизвестным.
Ученые Китайской академии агрокультурных наук под руководством Юцзюнь Чжана (Youjun Zhang) провели биоинформатический анализ и обнаружили в геноме насекомых B. tabaci ген малонилтрансферазы, который, по-видимому, и помогает насекомым нейтрализовать действие фенольных гликозидов. Дальнейшие исследования показали, что ближайшие гомологи этого гена есть у растений, но не у членистоногих. Ученые пришли к выводу, что что в геном насекомых B. tabaci попал специфичный для растений ген BtPMaT1. Этот ген экспрессируется у насекомых на всех стадиях развития, но больше всего во взрослом возрасте, и особенно в желудке.
Исследователи решили проверить, спасает ли растительный ген насекомых от воздействия фенольных гликозидов. Из листьев томата биологи выделили 11 соединений этой группы. Пять из них оказались ядовитыми B. tabaci, а шесть – не причинили вреда. При этом концентрации веществ (10 микромоль) в эксперименте были намного выше, чем те, которые получают насекомые в природе с пищей. Когда ученые снизили экспрессию гена BtPMaT1 на 49,2 процента, пять «нетоксичных» гликозидов повысили смертность насекомых.
Эксперименты in vitro на клеточных культурах показали, что белок BtPMaT1 действительно обладает малонилтрансферазной активностью в отношении трех из одиннадцати протестированных фенольных гликозидов. Под действием BtPMaT1, эти соединения превратились в соответствующие малонилгликозиды. Схожие результаты были получены и в экспериментах на насекомых, которых кормили листьями томатов.
Наконец, ученые проверили, можно ли повысить устойчивость растений к белокрылкам. Исследователи создали трансгенный томат, в геном которого вставили участки ДНК, кодирующие образующие шпильки малые молекулы РНК. Шпильки из РНК позволяют подавлять экспрессию того или иного гена, в этой работе ученые нацелили их на BtPMaT1. Смертность у насекомых, которым дали листьями таких томатов, повысилась уже на первый день кормления. В условиях, имитирующих полевые, трансгенные томаты привели к смерти почти 100 процентов белокрылок, тогда как в контрольной группе смертность составила только 20 процентов.
Исследование раскрывает необычный эволюционный путь, благодаря которому табачные белокрылки смогли применить растительный ген для нейтрализации растительного же токсина. До этого были известны примеры горизонтального переноса генов членистоногим только от микроорганизмов. Показанный же в этой работе горизонтальный перенос растительного гена наделил насекомых способностью питаться многими растениями, не опасаясь фенольных гликозидов.
Горизонтальный перенос генов – естественный процесс, когда один организм передает генетический материал не своему потомку. Получить чужую ДНК очень непросто, и о том, как это происходит, может прочитать в материале «Поверх барьеров».
Вера Сысоева
Также на когнитивное снижение повлияли варианты Гена APOE: аллель APOE4 его ускорила, а аллель APOE2 — замедлила
Исследователи из Колумбии и США изучили, как генотип аполипопротеина и годы образования влияют на когнитивные функции при наследственной болезни Альцгеймера. Выяснилось, что у носителей мутации PSEN1 E280A, связанной с семейной болезнью Альцгеймера, когнитивное снижение наступает раньше и развивается быстрее, если у них в то же время есть аллель APOE4, а у таких же носителей, но с аллелью APOE2, это снижение происходит медленнее. Также более медленное снижение когнитивных способностей было характерно для пациентов, которые больше лет жизни потратили на учебу, — и это к тому же ослабляло влияние особенно опасных вариантов APOE. Результаты опубликованы в Nature Communications. При семейной или наследственной болезни Альцгеймера (БА) когнитивный спад наступает рано и за несколько лет прогрессирует до слабоумия. Семейную болезнь Альцгеймера вызывают некоторые мутации, например, мутация E280A в гене мембранного белка пресенелина PSEN1. Еще один ген, влияющий на развитие и течение БА — ген белка аполипопротеина Е (APOE). Разные варианты этого гена связаны с большим или меньшим риском спорадической (ненаследственной) болезни Альцгеймера: аллель APOE4 повышает риск, а аллель APOE2 снижает его. О том, как варианты APOE влияют на развитие семейной БА известно мало. Одно небольшое исследование показало, что деменция у носителей мутации PSEN1 E280A наступает раньше, если у них есть аллель APOE4. Другое исследование не обнаружило влияния APOE4, но выявило, что аллель APOE2 задерживает клиническое начало заболевания примерно на 8 лет. Кроме того, на развитие БА влияют другие факторы: образ жизни, социально-экономические условия и другие показатели здоровья. Стефани Лангелла (Stephanie Langella) из Гарвардской медицинской школы вместе с коллегами из Колумбии и США решила выяснить, как варианты APOE и количество лет учебы влияют на когнитивные показатели пациентов с наследственной БА (исследователи не выделяли отдельно высшее образование или ученую степень, а смотрели именно на число лет, уделенных образованию). Для этого они проанализировали данные 675 носителей мутации E280A и 594 пациентов, у которых этой мутации не было. Носители и неносители мутации были членами одних и тех же семей. Ученые сравнивали баллы пациентов в краткой шкале оценки психического статуса (MMSE), которую используют для диагностики клинических проявлений деменции. Баллы MMSE у носителей и неносителей мутации PSEN1 E280A начинали различаться уже в возрасте 31,5 года — с этого момента когнитивные показатели носителей снижаются намного быстрее. У пациентов с мутацией E280A, у которых также была аллель APOE4 (141 человек), клиническое начало БА было более ранним, а у пациентов с мутацией E280A, но без аллели APOE4 (534 человека) — наоборот, наступало позже. Расхождения начинались в возрасте 44,3 лет — как раз во столько появляются первые признаки болезни Альцгеймера у пациентов с наследственной формой. Другая аллель, APOE2, напротив, была связана с более медленным когнитивным снижением в группе носителей PSEN1 E280A. А вот когнитивные траектории пациентов без мутации E280A были примерно одинаковыми и не зависели в от варианта APOE. Также исследователи обнаружили, что возраст начала клинических проявлений БА у пациентов с мутацией PSEN1 E280A зависел от количества лет, которые они потратили на учебу. Их когнитивные показатели снижались тем медленнее, чем больше они учились, — и это проявлялось особенно сильно у носителей аллели APOE4 и неносителей APOE2. То есть отрицательный эффект аллели APOE4 ослаблялся. Почти то же было и с неносителями мутаций, связанных с БА: более долгая учеба была связана с более высокими баллами MMSE, но здесь варианты APOE роли не играли. Пока не ясно, как именно аллель APOE4, связанная с большим риском, ухудшает течение семейной болезни Альцгеймера, и как другая аллель — APOE2 — от нее защищает. Но, как видно, большая продолжительность учебы снижает дополнительный риск. А иногда от вредного действия мутаций защищают другие мутации. Недавно исследователи обнаружили мутацию, которая отсрочила развитие семейной болезни Альцгеймера у мужчины. Это был редкий вариант гена RELN — H3447R или RELN-COLBOS. Клинические проявления начались у пациента почти на 20 лет позже обычного. Мужчина был не первым счастливчиком: до этого подобный случай был с женщиной, у нее мутация была как раз в гене APOE.