Официально введен в эксплуатацию российский нейтринный телескоп Baikal-GVD — массив оптических детекторов нейтрино, который размещен в толще воды в южной части озера Байкал. Строительство телескопа идет с 2015 года, сбор данных о нейтрино с его помощью физики начали в в 2016 году. О церемонии запуска с участием главы Минобрнауки Валерия Фалькова и руководителей организаций-участниц проекта сообщает агентство ТАСС.
Установку Baikal-GVD (Gigaton Volume Detector) с 2015 года строят физики из Института ядерных исследований РАН совместно с коллегами из дубненского Объединенного института ядерных исследований и учеными из Германии, Польши, Словакии и Чехии. Каждый год в конце зимы ученые опускают в озеро один-два кластера, состоящие из восьми «гирлянд», на каждой из которых установлены 36 оптических модуля с фотоумножителями для фиксации вспышек черенковского излучения, возникающих в толще воды под действием нейтрино высоких энергий.
К настоящему времени установлено семь кластеров, в этом году планируется запустить восьмой. После установки восьмого кластера эффективный объем детектора — объем, в котором он способен «видеть» вспышки и идентифицировать частицы — должен достичь 0,4 кубического километра. В перспективе планируется довести эффективный объем телескопа до кубического километра.
Нейтрино очень слабо взаимодействует с веществом, чтобы зафиксировать такое единичное взаимодействие требуются огромные детекторы с сотнями и тысячами тонн жидкого сцинтиллятора и сотнями фотодетекторов, отслеживающих слабые вспышки при таких взаимодействиях. Но даже такие нейтринные инструменты «ловят» по нескольку десятков нейтринных событий в год. Об одном из таких детекторов — установке Borexino — читайте в материале «Лаборатория под горой».
Особый интерес для физиков представляют астрофизические нейтрино, то есть нейтрино сверхвысоких энергий, которые могут рождаться в активных ядрах галактик. Поскольку нейтрино не реагируют на магнитные поля как заряженные частицы, не поглощаются межзвездной пылью, как фотоны, они несут информацию «с места событий». В частности, именно нейтрино первыми рассказали ученым о вспышке сверхновой 1987А в Магеллановом облаке — до того, как астрономы увидели оптическую вспышку.
Однако нейтрино непрерывно рождаются на Солнце, в недрах Земли, в атмосфере, в ядерных реакторах, и чтобы вычленить из этого фона относительно редкие астрофизические нейтрино, нужны действительно огромные детекторы, в которых в качестве «рабочего тела» используют огромные объемы воды или льда. Самая большая и самая знаменитая установка этого класса — нейтринный телескоп IceCube, массив оптических детекторов вмороженных в толщу антарктического льда, который начали строить в 2005 году, а в 2010 году довели его объем до кубического километра. О его работе мы писали в материале «Ледяное нейтрино».
Объем IceCube — 1 кубический километр, и к настоящему времени установка зарегистрировала около 100 нейтрино сверхвысоких энергий, в том числе несколько с энергией более петаэлектронвольта. Baikal-GVD начали строить относительно недавно, поэтому его результаты пока скромнее. Научный руководитель проекта, физик из ИЯИ РАН Григорий Домогацкий сообщил N+1, что к настоящему времени ученые «увидели» с помощью байкальской установки 12 кандидатов с энергиями до сотни тераэлектронвольт, из которых примерно половина после проверки и подтверждения может оказаться «настоящими» астрофизическими нейтрино.
О задачах байкальского телескопа и истории «подводной» и «подледной» нейтринной астрономии читайте в нашем материале «Кто стрелял?».
Сергей Кузнецов
Для этого их разнесли более чем на 30 метров
Физики из Швейцарской высшей технической школы Цюриха с коллегами из нескольких стран смогли впервые провести проверку неравенств Белла без лазеек с помощью сверхпроводящих кубитов. Для этого они разнесли криостаты на 30 метров и добились очень короткого (не более 50 наносекунд) времени считывания. Все вместе это позволило гарантировать, что никакой гипотетический скрытый сигнал не смог бы повлиять на результаты проверки. Исследование опубликовано в Nature. Эйнштейну не нравилась вероятностная интерпретация квантовой механики. Вместе с Подольским и Розеном он в 1935 году написал статью с описанием парадокса — мысленного эксперимента с двумя разнесенными частицами, квантовая связь между которыми якобы нарушала принцип причинности. В 1964 году Джон Белл предложил математический способ, как с помощью неравенств доказать, на самом ли деле квантовая механика управляется вероятностными законами, или в ее основе лежат некие, еще не понятые физиками скрытые параметры. Экспериментальная проверка неравенств Белла началась лишь спустя десятилетия, подтвердив ошибочность теории скрытых параметров. Подробнее об этой истории мы писали в материале «Бог играет в эти игры», посвященному Нобелевской премии по физике 2022 года. Проверка неравенств Белла — это не единомоментный процесс. Каждая следующая экспериментальная реализация оставляла небольшие лазейки, которыми можно было бы объяснить опыт, не отказываясь от локальной теории скрытых переменных. Но с 2015 года физикам наконец-то удалось закрыть их все, сначала с помощью дефектов в алмазе, затем фотонов и плененных атомов. Теперь же очередь дошла и до проверок без лазеек на сверхпроводящих кубитах. Это случилось благодаря Зимону Шторцу (Simon Storz) из Швейцарской высшей технической школы Цюриха и его коллегам из Испании, Канады, США, Франции и Швейцарии. Им удалось провести проверку для кубитов, разнесенных более, чем на 30 метров. Благодаря такому большому расстоянию и высокой скорости считывания физики показали, что никакой гипотетический скрытый сигнал не смог бы повлиять на исход проверки, даже двигаясь от одного кубита к другому на световой скорости. С самых первых белловских экспериментов физики находили и закрывали множество лазеек. Например, недостатком эксперимента на фотонах долгое время было малое число запутанных пар. Из-за этого всегда можно было утверждать, что набранная статистика отражает лишь свойства некоторого подмножества от полного множества, в котором неравенства выполняются. Однако в конечном счете гипотезу о скрытых параметрах можно отвергнуть, если гарантировать, что никакой скрытый сигнал — во всяком случае, на световой или досветовой скорости — не успеет передаться от одного измерения до другого. Для этого кубиты должны быть достаточно далеко, а время считывания должно быть достаточно коротким. Наконец, физики обязаны накопить приличную статистику измерений, прежде чем делать выводы. Решению этих технических задач для сверхпроводящей платформы была посвящена работа авторов. Такие кубиты основаны на способности тока находится в суперпозиции направлений течения в сверхпроводящем контуре. Для их запутывания необходимо передавать между кубитами микроволновые фотоны, причем канал их передачи также должен находится при сверхнизких температурах. Ученые справились со своей задачей, разместив свои криостаты в подземных помещениях. Ключом к успеху стало достижение времени считывания, равного 50 наносекундам, со степенью совпадения 98 процентов. Расчеты показали, что, достаточно будет разделить события проверки кубитов 33 метрами. В этом случае у физиков остается запас в 10 наносекунд, которого достаточно, чтобы закрыть лазейку — скрытый сигнал не успеет повлиять на результат. Чтобы минимизировать разрушение запутанности, переносимой микроволновыми фотонами по волноводу, физики упаковывали последний в 30-метровую трубу, в которой поддерживали температуру 50 милликельвин. Сами кубиты содержались при температуре в 20 милликельвин. Всего ученые провели четыре последовательных эксперимента, в каждом из которых было более миллиона тестов. В результате статистический параметр неравенства оказался равен S = 2,0747 ± 0,0033 — другими словами, неравенства Белла нарушаются со значимостью в 22 стандартных отклонения. Помимо самого факта белловской проверки без лазейки, работа авторов прокладывает технологический путь к построению распределенных квантовых сетей на основе сверхпроводящих кубитов. Недавно мы рассказывали об аналогичных успехах для ионных кубитов — там квантовую запутанность передали на 230 метров.