Немецкие ученые предложили новый механизм, объясняющий крайне быстрое «выстреливание» маски личинки стрекозы, и экспериментально подтвердили его возможность с помощью искусственного аналога этого органа, проявляющего такие же двигательные свойства. Статья с исследованием природного механизма и описанием конструкции искусственного аналога опубликована в журнале Science Robotics.
Личинки стрекоз используют для охоты маску — орган, который эволюционировал из нижней губы. Он состоит из двух основных продолговатых сегментов и трех лопастей на конце: двух больших боковых и одной небольшой нижней, расположенной между ними. Для захвата жертвы, например, головастика, личинка резко открывает лопасти и распрямляет продолговатые сегменты, а затем закрывает лопасти обратно, захватывая в них добычу.
До недавнего времени механизм этого быстрого движения был не до конца ясен. Основной считалась гипотеза, что личинки используют для этого струю воды, выходящую из ректальной камеры из-за сокращения брюшных мышц. Обычно эта струя используется для защиты от хищников и быстрого ускорения. Ученые предполагали, что для атаки маской личинка может перенаправлять поток воды и тем самым ускорять распрямление этого органа. Однако эксперименты с измерением активности мышц и их рассечением показали, что во время атакующего движения личинки не задействуют эти мышцы. Кроме того, на иной механизм косвенно указывали блокирующие механизмы в маске, предназначение которых было неизвестно.
Исследователи из Кильского универститета под руководством Себастьяна Буссе (Sebastian Büsse) предложили новый механизм, объясняющий быстрое движение маски личинки, и воссоздали его в искусственном аналоге этого органа. Они предположили, что выдвигающий маску механизм по своему принципу работы напоминает катапульту. В каждом из сегментов есть как мышцы, способствующие движению, так и структуры из эластичного белка резилина. Эти эластичные элементы, находящиеся в деформированном состоянии, запасают энергию для мгновенного начала движения.
От срабатывания маску удерживает блокирующий механизм из трех компонентов. Для активации маски в ней есть дополнительная мышца, которая расцепляет части блокирующего механизма, после чего сегменты получают возможность свободно двигаться, а эластичные элементы из резилина начинают раскрывающее движение всей конструкции.
Исследователи провели эксперименты с личинками стрекоз родов Sympetrum и Anax. Они помещали личинки на мелкий песок (под водой) для того, чтобы видеть направление потоков воды. Выяснились, Anax во время захвата маской выстреливают водой назад, вероятно, для компенсации отдачи от маски, а Sympetrum вовсе не задействуют водяную струю при распрямлении маски. Таким образом авторы показали, что предыдущая гипотеза о гидравлическом механизме работы маски, вероятно, ошибочна. Также они косвенно подтвердили свою гипотезу, обнаружив резилиновые структуры в сегментах маски при помощи красителя. Наконец, авторы использовали КТ-томографию для создания точной модели движения маски, а также создания механического аналога.
Искусственный аналог маски состоит из неподвижной основы и двух сегментов под ней. Таким образом, он имитирует именно основное выдвижное движение маски, а не полностью ее работу, в том числе схлопывание лопастей. Вместо мышц в робомаске используется три сервопривода и три пружины (по две в среднем сегменте и одна в верхнем). Между нижним и средним сегментами установлен блокирующий механизм с еще одним сервопривод. Перед началом движения сервомоторы натягивают пружины, а затем сервопривод блокировщика отводит две блокирующие пластины вбок и два нижних сегмента из-за натяжения пружин одновременно начинают двигаться.
Авторы работы провели эксперименты, во время которых замеряли скорость движения сегментов. Расчеты показали, что для получения наблюдаемых скорости и ускорения сегментов необходима мощность в 48,6 ватт для первого сегмента и 29,7 ватт для второго, тогда как сервоприводы имеют пиковую мощность 3,8 и 1,9 ватт. Это подтверждает, что конструкция дает большое усиление мощности. Такие же расчеты они провели и для личинок. Они также показали, что простого движения мышц недостаточно для столь быстрого движения их масок. Кроме того, авторы показали, что робомаска позволяет за счет разного натяжения пружин в сегментах менять высоту и дальность, на которую выдигается конец маски. Эта особенность также наблюдалась и у личинок.
Исследователи отметили, что опровергли предыдущие гипотезы о природе быстрого движения маски личинки стрекозы и двумя методами доказали работоспособность нового механизма. Вместе с тем они считают, что для более полного изучения механизма необходимы дальнейшие исследования. В частности, они подозревают, что энергия для мгновенного начала движения может храниться не только в резилиновых структурах, но и в окружающей их кутикуле. Авторы считают, что созданный ими искусственный аналог маски личинок можно использовать в качестве основы для прыгающих роботов.
В 2019 году американские инженеры сумели воспроизвести при помощи 3D-печати другой необычный механизм, встречающийся в природе — клешню рака-щелкуна, которая за счет быстрого сведения и особой формы клешни способна создавать пузырьки с плазмой. Это создает в воде звук с уровнем громкости более 200 децибел, который оглушает, а иногда и сразу убивает добычу рака.
Григорий Копиев
Этим останкам примерно 11 тысяч лет
Палеозоологи проанализировали 643 черепа древних и современных волков и собак, живших в течение последних 50 тысяч лет. Они выяснили, что все плейстоценовые черепа принадлежали животным, которых нельзя по морфологии отличить от волков. Самые древние останки из выборки, которые уверенно можно классифицировать как собачьи, происходили из мезолитического памятника Веретье-1, раскопанного много лет назад на юге Архангельской области. Как сообщается в статье, опубликованной в журнале Science, возраст этих находок составляет примерно 11 тысяч лет.