Ученые разработали генератор случайных чисел на основе ДНК. Они синтезировали цепи из случайно расположенных нуклеотидов и после их секвенирования получали последовательности чисел, которые проверяли на случайность. Работа опубликована в Nature Communications.
Генераторы случайных чисел активно используются в шифровании и дешифровании информации для того, чтобы гарантировать безопасность передачи данных: чем дальше развиваются технологии криптографии, тем более совершенные генераторы случайных чисел необходимы. На данный момент существует два типа генераторов, которые принципиально отличаются друг от друга.
Первый — генераторы истинно случайных последовательностей, которые используют непредсказуемые данные какой-то физической системы. Например, это может быть дробовой шум, радиоактивный распад или квантовый вакуумный шум. Все эти процессы случайны и генерируют истинно случайные последовательности. Сложность только в том, чтобы такой генератор реализовать и получать случайные числа с высокой частотой.
Генераторы псевдослучайных чисел, в свою очередь, не нуждаются в сложной физической реализации, потому что основаны на сложных математических алгоритмах. Псевдослучайная последовательность отличается от истинно случайной тем, что первую можно вычислить, если знать все входные параметры для ее генерации, а вторую нельзя ни при каком условии.
Помимо физических явлений случайность могут определять и некоторые химические реакции. Группа ученых во главе с Робертом Грассом (Robert N. Grass) из Швейцарской высшей технической школы Цюриха предложила использовать в качестве источника случайных чисел реакцию синтеза цепи ДНК.
Авторы исследовали нити ДНК, которые состояли из случайной последовательности и праймеров с двух сторон от нее. Часть со случайной последовательностью состояла из 64, а вся цепочка содержала 105 нуклеотидов. В эксперименте использовали три партии по 204 микрограмма высушенной ДНК от двух разных производителей: ученые считывали последовательность нуклеотидов и отбрасывали те цепочки, в которых часть с праймера не совпадала с заданной и выявляли тренды, которые возникали в случайной части последовательности.
Оказалось, что во всех образцах процентное содержание гуанина и тимина больше, чем содержание аденина и цитозина. Кроме этого, если концентрации аденина и цитозина постоянны вдоль всей случайной цепочки, то количество гуанина убывает, а тимина — возрастает в направлении от 5′ до 3′. Первая особенность может быть связана с тем, что концентрации разных строительных блоков может отличаться в пределах одного микролитра. Тем не менее, возникновение одного и того же тренда в трех разных партиях скорее всего говорит о том, что его причина кроется в разной эффективности связывания разных нуклеотидов.
Второй тип неоднородности по направлению цепочки может быть связан с трансверсией (заменой) гуанина на тимин. Дело в том, что гуанины, которые дольше находились в среде синтеза, прошли большее число стадий окисления и при репликации ДНК могут быть заменены на тимин.
Наличие любых зависимостей внутри случайной последовательности делает ее менее случайной, поэтому любые тренды стараются избегать или устранять. Ученые решили избавляться от нежелательных зависимостей уже в пост-обработке последовательности, потому что попытки вмешаться в процесс синтеза могут сделать его неустойчивым и дать еще более непредсказуемые результаты.
Для проверки качества случайной последовательности используют набор из 15 статистических тестов на двоичных последовательностях. Поэтому авторы устанавливали правило, по которому считанная цепочка кодирует двоичный код (аденин и цитозин — 0, гуанин и тимин — 1). Они тестировали последовательность сразу после считывания, а успешный результат получали не для всех тестов.
Недостаток полученной последовательности связан с теми зависимостями, которые возникали при синтезе ДНК, поэтому ученые обрабатывали сырую последовательность с помощью алгоритма Фон Неймана: из последовательностей 10 или 01 брали только первое значение, а второе отбрасывали, а последовательности 00 и 11 отбрасывали целиком. Итоговый набор чисел сильно укорачивался, но успешно проходил все 15 тестов на случайность и показывал отличное вероятностное распределение.
ДНК как физическая основа генератора случайных чисел может хранить информацию долгое время и из-за своих небольших размеров удобна для транспортировки. Авторы показали возможность получения случайных чисел со скоростью выше 225 гигабит в секунду с помощью такой реализации. Несмотря на то, что исследования по снижению затрат на синтез и чтение все еще ведутся, использование ДНК в качестве генератора случайных чисел возможно уже сегодня.
Физики с разных сторон подходят к созданию генератора истинно случайных чисел. Один из самых естественных путей в этом направлении — использование квантовых процессов, которые сами по себе обладают неопределенностью. Так, российские физики построили генератор случайных чисел, в основе которого лежит поглощение фотонов атомами фотоумножителей и получили скорость генерации выше 75 мегабит в секунду.
Оксана Борзенкова
Ее температура на прямом солнце оказалась до двух градусов ниже окружающего воздуха
Китайские ученые разработали многослойные цветные пленки, которые могут охлаждать поверхность до двух градусов Цельсия по сравнению с температурой окружающей среды. Высоко-насыщенный цвет этих пленок — до 100 процентов цветопередачи — виден в широком диапазоне углов (± 60 градусов). На создание такой структуры физиков вдохновили бабочки вида Morpho menelaus. Статья опубликована в журнале Optica. Большинство искусственно созданных красок работают из-за поглощения части диапазона видимого света, что может приводить к существенному нагреву окрашенных ими предметов. Чтобы предотвратить нежелательный нагрев часто используют белую краску, которая практически полностью отражает солнечную энергию. Создание разноцветных поверхностей, которые при этом не нагреваются — до сих пор сложная задача. Однако в природе встречается и другой способ цветовой передачи. Например у некоторых бабочек цвет крыльев возникает при возникновении интерференции из-за специфического отражения света от периодической структуры их крыльев. Ван Гопин (Guo Ping Wong) с коллегами из Шеньчжэньского университета предложили свое решение проблемы нагрева окрашенных поверхностей, как раз вдохновившись структурой крыльев бабочек M. menelaus. Благодаря многослойности и наличию неупорядоченных компонентов, крылья бабочек этого вида передают высокую насыщенность синего цвета в широком угле обзора. Ученые воссоздали аналогичную структуру, поместив нескольких слоев из оксидов титана TiO2 и кремния SiO2, на матовое стекло, расположенное на отражающей серебряной поверхности. Ученые оптимизировали толщину верхних слоев и добились полного отражения нежелательного желтого света. При этом синий свет свободно проникал через верхнюю многослойную структуру, испытывал диффузное отражение от неупорядоченного матового стекла, отражался от серебряного зеркала и, возвращаясь через верхнюю многослойную структуру, обеспечивал насыщенный синий цвет образца. В результате ученым удалось добиться высокой насыщенности синего цвета, до 100 процентов, в угле обзора ±60 градусов, за исключением узкого диапазона — зеркального по отношению к падающему свету — в котором отражался желтый цвет. При этом эта пленка обеспечила охлаждение до двух градусов Цельсия ниже температуры окружающей среды, что сравнимо с эффективностью бесцветной охлаждающей пленки на основе серебра и полидиметилсилоксана (ПДМС). Охлаждение образца происходило за счет высокой эффективности диффузного отражения синей части спектра, малого поглощения нежелательной части видимого спектра и ближнего инфракрасного излучения, а также из-за высокого излучения в среднем инфракрасном диапазоне. Ученые создали по той же технологии образцы различных цветов и экспериментально измерили их способность охлаждать поверхности, располагая их на крыше здания института и на автомобилях. Обычная синяя краска при температуре воздуха 27 градусов Цельсия и на прямом солнце нагревалась в этих экспериментах до примерно 70 градусов. А образцы новой пленки в тех же условиях продемонстрировали температуру поверхности до 45 градусов ниже. Авторы статьи подсчитали, что за обычный метеорологический год в Шеньчжене замена обычной синей краски на охлаждающую могла бы привести к сохранению около 1377 мегаджоулей на квадратный метр энергии, требующейся на охлаждение. Ученые полагают, что дальнейшая оптимизация структуры пленок, например замена серебра на многослойный диэлектрик, позволит еще больше увеличить охлаждающий эффект. Ученых не в первый раз привлекла способность неупорядоченных структур в природных объектах к охлаждению. Они хорошо рассеивают солнечный свет, что можно использовать, например, для предотвращения таяния льдов.