Китайские ученые разработали магнитное покрытие, которое можно наносить на многие материалы. Это позволяет создавать миниатюрных роботов, управляемых магнитным полем — при том «программировать» можно каждый отдельный участок. Инженеры сконструировали несколько моделей роботов и проверили работоспособность одного из них в желудке кролика. Статья опубликована в журнале Science Robotics.
Роботы размером с насекомых могут помочь там, куда человек проникнуть не в состоянии — например, в живые органы. Чтобы научить таких роботов передвигаться, ученые используют множество естественных моделей движения: шагания пауков, реактивные сокращения тела медуз и ползание червей и змей. Пока что, однако, крайне сложно обеспечить полностью автономную систему с собственной системой питания и управлением. А потому миниатюрных роботов, как правило, делают на основе пассивных конструкций, которыми можно управлять внешними стимулами, например, магнитным полем.
Чтобы робот мог взаимодействовать в различных условиях, нужно решить две ключевых проблемы — невозможность модифицировать робота после сборки и узкие проходы, через которые робот может не пролезть вместе с грузом. С изменением формы робота справляются мягкие материалы на основе полидиметилсилоксана или гидрогелей, хотя они обладают ограниченными механическими свойствами и не могут приспособиться ко всем условиям нагрузок.
Сюн Ян (Xiong Yang) с коллегами из Городского университета Гонконга поставил себе целью упростить процесс получения миллироботов. Ученые предложили напылять спрей, состоящий из поливилинового спирта, глютена (который упрочняет пленку и повышает адгезию к рыхлым поверхностям) и магнитных железных частиц, на поверхность каркаса робота. Получившимся миниатюрным роботом можно управлять с помощью магнитного поля.
В первую очередь они решили проверить, какой состав спрея лучше использовать, чтобы он имел лучшую адгезию к поверхности каркаса. Они выбрали состав, в котором соотношение глютена, магнитных частиц и поливинилового спирта составляет 1 к 8 к 11 соответственно. Из сопла распылителя спрей вылетал со скоростью, доходящей до метра в секунду. Итоговая тонкая пленка на поверхности каркаса имела толщину в 500 микрометров. Такой состав хорошо наносился на разные поверхности: полидиметилсилоксан, стекло, бумагу, пластик и дерево.
С помощью приложенного магнитного поля с индукцией в 100 миллитесла ученые получили в своей структуре направленные цепочки из железных частиц, расположенных по линиям магнитного поля. Затем полученную пленку высушивали, после чего ее толщина уменьшалась до 100-250 микрометров, а железные частицы больше не могли менять своего положения. Намагниченность таких пленок линейным образом зависела от приложенного магнитного поля, а потому двигательная способность оказалась хорошо контролируемой.
Для роботов с мягкой структурой ось намагничивания физики направили перпендикулярно направлению деформации, чтобы получить циклическое изменение формы. А для роботов с жестким каркасом — параллельно направлению движения. Чтобы удостовериться, что миллироботам под силу многие паттерны движения, ученые сделали несколько моделей: мягкий робот-рептилия, многосуставный робот-оригами, шагающих робот и катящийся робот. Новый спрей позволяет любому небольшому предмету перемещаться под действием магнитного поля, при этом предмет незначительно прибавляет в размерах и весе. Для сложной трехмерной структуры паука-оригами авторы намагничивали его подвижные модули независимо друг от друга, чтобы они правильным образом сгибались при движении.
"Перепрограммировать" направление намагниченности робота не составляет большого труда — нужно намочить тонкий слой водой и приложить магнитное поле в 200 миллитесла. За десять минут намагниченные цепочки из железных частиц повернутся в направлении поля. А чтобы очистить поверхность от магнитной пленки достаточно приложить осциллирующее поле с индукцией в десять миллитесла и частотой в один герц.
В качестве применения для своих миллироботов ученые продемонстрировали катетер с кончиком из трех секций в магнитном спрее. С помощью магнитного поля катетер удалось провести через модель узкого витиеватого канала. Также авторы статьи покрыли спреем капсулу с лекарством — она проникала в желудок, где под действием переменного магнитного поля высвобождала лекарство в ограниченном пространстве. По мнению ученых новая технология позволит превратить в миниатюрных роботов любой каркас и доставлять лекарства в маленькие непредсказуемые участки.
Сложные роботы в форме оригами уже несколько лет интересуют физиков с точки зрения управления их участками в отдельности от остальных. Три года назад американские ученые сконструировали треугольного робота-оригами, на местах сгиба которого находились небольшие электрические схемы — каждый участок управлялся отдельно в зависимости от частоты переменного магнитного поля.
Артем Моськин
В ловушку Пауля уместилось 105 ионов кальция
Австрийские физики смогли собрать в ловушке Пауля двумерный ионный кристалл, состоящий из 105 ионов кальция — это самый большой показатель на сегодняшний день. Кристалл был стабилен в течение нескольких секунд, также физикам удалось добиться охлаждения ионов в основное колебательное состояние и доступа к отдельным частицам. В перспективе это позволит существенно расширить квантовые вычисления и квантовые симуляции на ионных массивах. Исследование опубликовано в PRX QUANTUM. Массивы ионов, выстроенные в ловушках — это перспективная система для квантовых вычислений и квантовых симуляций. Ионы хороши тем, что взаимодействуют друг с другом сильно, а также позволяют удерживать себя электрическими и магнитными полями. За счет этого вычислители на ионах можно сделать компактнее. Одна из главный проблем этой технологии — масштабируемость. Рекордные 53 иона были собраны группой Монро еще в 2017 году, и дальнейший рост сталкивается с целым рядом технических трудностей. Их можно было бы преодолеть, собирая двумерные упорядоченные структуры. Такие эксперименты проводились, однако тогда физики не имели доступа к управлению отдельными ионами из-за особенностей удерживающих ловушек. Ситуация изменилась благодаря работе физиков из Инсбрукского университета. Ученые смогли собрать устойчивую двумерную структуру из 105 ионов кальция, удерживаемых монолитной радиочастотной ловушкой Пауля. Им также удалось перевести такой кулоновский кристалл в основное состояние по поперечным колебательным модам, что необходимо для реализации разнообразных протоколов запутывания. Большая трудность, которая встает на пути удержания двумерных массивов паулевой ловушкой — это высокая чувствительность ионов в неточности расположения ее элементов. Для борьбы с этой проблемой, физики использовали монолитный подход, в котором все элементы ловушки остаются частью одного твердого тела, а потому практически не смещаются относительно друг друга. Авторы изготавливали электроды таким образом, чтобы сформировать плоский анизотропный потенциал, из-за чего ионный кристалл принимал эллиптическую форму. Их установка давала лазерным лучам доступ к ионам в широком диапазоне углов, что позволило эффективно проводить манипуляции и визуализацию кристалла. В начале эксперимента физики подвергали лазерной абляции твердотельный кальциевый образец. Они облучали испущенные атомы ионизирующим лучом, после чего ионы попадали в область ловушечных потенциалов, где в течение минуты формировался кристалл. Ученые охлаждали его с помощью метода боковой полосы и метода электромагнитно-индуцированной прозрачности. В качестве кубитов авторы использовали несколько зеемановских подуровней. Для контроля отдельных ионов они фокусировали свет с помощью двухмерного акустооптического дефлектора. Оказалось, что время когерентности в таких кубитах может быть продлено до 370 миллисекунд при том, что сам кулоновский кристалл остается стабильным в течение нескольких секунд даже без лазерного охлаждения. Один из путей масштабирования квантовых вычислений на ионах — использовать кудиты вместо кубитов за счет нескольких уровней. Недавно мы рассказывали, как российские физики объединили два кукварта на основе ионов кальция и продемонстрировали на них универсальный набор квантовых операций.