Facebook AI представила M2M-100 — первый мультиязыковой переводчик, который не использует дополнительный шаг с переводом исходного текста на английский. Для обучения алгоритма ученые автоматически собрали 7,5 миллиарда предложений на 100 языках, для каждого из которых доступен перевод как с исходного языка, так и на целевой. Подробнее о проекте рассказывается на сайте компании.
Во многих случаях машинный перевод с одного языка на другой проходит через один обязательный этап — перевод исходного текста на английский, а затем — перевод уже этого текста на язык целевой. Этот шаг значительно облегчает задачу, в особенности — когда дело касается статистического перевода, основанного на параллельных корпусах: текстов на английском языке значительно больше, чем на любом другом языке, и вероятность того, что какой-то текст будет переведен на английский язык и это можно будет использовать для перевода, также значительно выше.
При этом переход через английский, разумеется, необязателен, а иногда может быть и лишним: например, смысла в том, чтобы использовать английский в автоматическом переводе с русского на чувашский, нет совсем, так как параллельных корпусов английский-чувашский меньше, чем русский-чувашский. Кроме того, в процессе могут появляться лишние грамматические ошибки или семантически неправильно использованные слова.
Избавиться от перевода на английский частично позволили переводчики, основанные на нейросетях. Тем не менее, мультиязыковых переводчиков, которые бы не использовали дополнительный шаг с переводом на английский, до сих пор не было.
Чтобы обучить систему переводить с одного языка на другой без использования английского, разработчики Facebook собрали корпус из предложений: для этого использовали доступные программы-кроулеры, в том числе — представленную в прошлом году CCAligned (разновидность Common Crawl). Разработчики сосредоточились на 100 языках (это чуть меньше, чем у Google Переводчика, который поддерживает 108 языков), которые разбили на 14 групп на основе принадлежности к лингвистическим семьям, культурным особенностям носителей и странах, в которых носители проживают.
Далее все возможные пары перевода с каждого из 100 языков отсортировали на основе того, насколько часто они используются — самым популярным парам уделяли больше места в получившемся фразовом словаре. Всего разработчикам удалось собрать 7,5 миллиарда фраз — для определения языка использовали разработанный в Facebook сервис FastText. Дополнительно разработчики использовали автоматически переведенные предложения — этот шаг необходим для языков, параллельных корпусов с которыми в принципе очень мало.
Собранные данные использовали для обучения модели на основе XLM-R — алгоритма перевода, который Facebook представил в прошлом году, а количество учтенных грамматических, морфологических и семантических параметров достигает 12 миллиардов.
По словам разработчиков, качество перевода M2M-100 превышает системы, основанные на переходе через английский язык: система набрала на 10 очков BLEU (стандартных алгоритм для оценки качества машинного перехода: обычно он выдает коэффициент от 0 до 1, но в работе разработчики, по-видимому, использовали другую шкалу) больше, чем другие протестированные системы.
Пока что Facebook не планирует использовать M2M-100 в своих сервисах: проект реализуется в первую очередь в исследовательских целях. Модель и датасет для обучения исследователи также выложили в открытый доступ.
Другой переводчик от Facebook, представленный два года назад, и вовсе обходится без параллельных корпусов: в нем для перевода используется векторная репрезентация отдельных слов.
*Facebook принадлежит компании Meta, деятельность которой в России запрещена.
Елизавета Ивтушок
Она обучалась на библейских текстах
Компания Meta* выпустила языковую модель, которая понимает устную речь. Она распознает более 4000 языков и может разговаривать на 1107 из них. Meta считает, что модель поможет сохранить языковое разнообразие в мире. Статья опубликована на сайте компании, код модели доступен на гитхабе. Обычно модели распознавания речи обучаются на больших объемах данных: им требуются тысячи часов аудиозаписей. При этом каждой записи должен соответствовать текст, чтобы модель научилась сопоставлять звучащую и письменную речь. Такие большие датасеты можно собрать только для популярных языков, на которых говорит много людей. Всего в мире существует около 7000 языков, но современные системы распознавания речи поддерживают не более 200 из них. Команда инженеров из компании Meta под руководством Майкла Аули (Michael Auli) обучила большую модель для распознавания речи Massively Multilingual Speech (MMS), которая может общаться на 1107 языках и распознавать 4017. Нейросеть обучалась на религиозных записях. Исследователи собрали два датасета: один с аудиозаписями и соответствующими текстами и второй только с аудиозаписями. Первый датасет состоит из 55 тысяч аудиозаписей, на которых люди зачитывают вслух тексты из Нового Завета. Всего в Новом Завете 27 книг и 260 глав. Данные собирали из трех источников: Faith Comes By Hearing, GoTo.Bible и YouVersion. Во второй датасет попали 7,7 тысяч часов аудиозаписей с сайта Global Recordings Network: это религиозные песни, записи отрывков из Библии и других религиозных текстов. Для обучения использовали нейросеть архитектуры wav2vec 2.0. Сначала ее предобучили, чтобы она могла превращать аудиозаписи в векторные представления. Дело в том, что нейросети работают не с сырыми записями, а с векторами — наборами чисел. Поэтому нужен механизм для превращения аудиозаписей в вектора из чисел, причем похожие аудиозаписи должны быть представлены геометрически близкими векторами. Для получения векторных представлений можно использовать любые аудиозаписи, главное чтобы их было много. Поэтому ученые объединили второй религиозный датасет с другими большими аудиодатасетами, в том числе Multilingual Librispech, CommonVoice, VoxLingua-107, BABEL и VoxPopuli. Всего в выборку попала 491 тысяча часов аудиозаписей без текстов. После предобучения получилась готовая модель MMS. Затем авторы натренировали MMS превращать речь в текст, дообучив ее на первом религиозном датасете с аудиозаписями и текстами. В разных частях света распространены разные типы языков, поэтому авторы определили точность модели для языков с разных континентов. Она научилась распознавать речь на 1107 языках со средней точностью по континенту 97 процентов. Авторы также проверили качество распознавания речи на нерелигиозных аудиозаписях. MMS сравнили с лучшими моделями для распознавания речи Whisper от OpenAI и USM от Google на датасете FLEURS. MMS ошибалась в два раза меньше, чем Whisper и на 6 процентов меньше, чем USM. В задаче определения языка MMS оценивали на датасетах FLEURS, VoxLingua-107, BABEL и VoxPopuli, в которые входит до 107 языков. К предобученной модели приделали простой линейный слой-классификатор, который натренировали определять язык на аудиозаписи. Модель показала такое же качество, как и конкурентные модели. При увеличении числа распознаваемых языков до 4000 с помощью дообучения на религиозных датасетах, качество модели падает совсем немного, с 94 до 93 и с 84 до 80 процентов на разных датасетах. Также авторы оценили, насколько хорошо MMS генерирует речь на 1107 языках, которые она умеет превращать в текст. Для этого модель обучили на архитектуре VITS — на момент создания MMS эта нейросеть показывала лучшие результаты по генерации звучащей речи на трех языках: английском, португальском и французском. Авторы масштабировали ее до 1107 языков, но в отличие от других задач, обучали нейросеть для каждого языка по отдельности. Качество модели оценили на языках по континентам. Средняя точность генерации речи по континенту составила 98 процентов. Лучше всего модель говорит на европейских и южноамериканских языках, хуже всего — на африканских. Наконец, ученые проверили, не повлиял ли характер религиозных датасетов на качество модели. Для этого нейросеть обучили отдельно на религиозных текстах и на повседневной речи из датасета FLEURS. Затем каждая модель должна была преобразовать звучащую повседневную речь из датасета FLEURS в текст. Хотя в обучающей выборке MMS было много религиозных терминов, в текстах она использовала их ненамного (менее чем на процент) чаще, чем модель, обучения на нерелигиозном датасете. На графике показана частота религиозных терминов в обучающей выборке и при превращении речи в текст. Разница между двумя моделями почти не заметна, хотя и немного отличается для некоторых языков. Качество модели оценивали в трех экспериментах, но задач по пониманию и генерации звучащей речи существует гораздо больше. В работе не указано, насколько хорошо большая мультиязычная модель проявила бы себя в более сложных задачах, таких как перевод, определение темы высказывания или поиск ключевых слов. Хотя MMS работает с большим числом языков, чем конкурентные модели, она пока не понимает все 7000 языков мира. Ученые планируют добавить в модель более редкие языки с малым количеством носителей. Они считают, что это может помочь спасти исчезающие языки от вымирания. Кроме того, в данных недостаточно представлены диалекты разных языков. В даркнете тоже говорят на своем языке, вернее на сленге. Обычные языковые модели плохо его понимают. Южнокорейские ученые обучили нейросеть DarkBERT читать тексты из даркнета и выполнять по ним задачи, связанные с кибербезопасностью. *Деятельность компании Meta запрещена в России.