Эксперимент CMS увидел следы рождения топ-кварков в столкновениях ультрарелятивистских ядер свинца на Большом адронном коллайдере со статистической точностью в 4 σ. Ранее рождение этой самой тяжелой элементарной частицы наблюдали только в протон-протонных и протон-ядерных столкновениях. Ожидается, что рождающиеся в столкновениях ядро-ядро топ-кварки помогут физикам пронаблюдать эволюцию кварк-глюонной плазмы с течением времени и лучше изучить ее свойства. О полученных результатах сообщается в препринте статьи, а недавно она была принята к публикации в журнале Physical Review Letters.
Топ-кварк — кварк третьего поколения, самый тяжелый из шести кварков, а также в принципе самая тяжелая из известных элементарных частиц. Впервые он был обнаружен 25 лет назад на Тэватроне в Фермилабе в столкновениях пар протон-антипротон, где в дальнейшем и были изучены ее основные свойства. Согласно предсказаниям Стандартной модели время жизни топ-кварка составляет всего 5 × 10-25 секунды, что на порядок меньше характерного времени сильного взаимодействия. Благодаря этой особенности он не адронизируется (в отличие от всех остальных кварков), что делает его идеальной частицей для изучения материи, в которой он образуется.
На Большом адронном коллайдере топ-кварк уже видели в столкновениях протон-протон и протон-ядро, однако эта частица представляет особый интерес для физиков в столкновениях ядро-ядро. Именно в них изучают кварк-глюонную плазму — состояние сильновзаимодействующей материи, в котором кварки и глюоны ведут себя как свободные от конфайнмента квазичастицы, подобно электронам и ионам в обычной плазме. Предполагается, что вселенная полностью состояла из кварк-глюонной плазмы на временных масштабах вплоть до микросекунд после Большого взрыва, из-за чего физикам особенно важно понять, как это состояние материи эволюционирует со временем.
Уже существует ряд методов изучения кварк-глюонной плазмы, мельчайшие «капли» которой рождаются в столкновениях ультрарелятивистских ядер на коллайдерах. К примеру, за ней наблюдают по уменьшению энергии проходящих сквозь нее джетов — струй частиц, рождающихся в ходе адронизации кварков и глюонов. Также за кварк-глюонной плазмой можно наблюдать по подавлению рождения кваркониев, но оба этих метода дают лишь ее усредненные по большому промежутку времени характеристики, ведь время происходящих в них процессов сопоставимо со временем жизни кварк-глюонной плазмы. А время жизни топ-кварка крайне мало, поэтому по взаимодействию продуктов его распада с кварк-глюонной плазмой в различные моменты ее существования можно составить более полную картину ее эволюции с течением времени. О возможностях такого метода ранее сообщалось в теоретическом исследовании одного из ученых в ЦЕРН.
Именно это делает особенно важным результат эксперимента CMS, в рамках которого в столкновениях ультрарелятивистских ядер свинца при энергии 5,02 тераэлектронвольт на нуклон-нуклонную пару физики увидели следы рождения топ-кварков. Сечение рождения считали двумя методами: в первом ученые наблюдали только за парами лептонов противоположного заряда (электронами и мюонами) в конечном состоянии, а во втором также учитывали присутствие в распаде джетов от адронизации прелестного кварка. В первом случае полученное сечение составило 2,5 ± 0,8 микробарн, во втором — 2,0 ± 0,7 микробарн, что сопоставимо с предсказаниями квантовой хромодинамики и результатами экспериментов с протон-протонными столкновениями.
Важно отметить, что накопленные данные еще не достигли требуемой для подтверждения наблюдения топ-кварка в столкновениях ядро-ядро статистической точности в 5 σ: пока что ученым удалось набрать статистику на 4 σ. Тем не менее вероятность, что полученный результат — лишь статистическая флуктуация, не превышает 0,003 процента, а CMS расценивает этот результат как убедительную демонстрацию возможностей детектора по регистрации топ-кварка. Физики уверенны и в том, что данные о рождении этой частицы в ядро-ядерных столкновениях будут использованы для изучения с ее помощью кварк-глюонной плазмы.
Хоть обычно для получения кварк-глюонной плазмы используют тяжелые ядра, она также может рождаться и в протон-протонных столкновениях: на это указал избыток частиц со странным кварком в эксперименте ALICE. О других последних результатах работы Большого адронного коллайдера мы сообщаем в теме «Второй сезон Коллайдера».
Ее до сих пор не удавалось зарегистрировать из-за акустичности, электро-нейтральности и отсутствия взаимодействия со светом
Физики экспериментально обнаружили в рутенате стронция Sr2RuO4 особый вид плазмона — демон Пайнса. Существование этой частицы было предсказано 67 лет назад, но из-за акустичности, электро-нейтральности и из-за отсутствия взаимодействия со светом ее до сих пор не удавалось зарегистрировать. Чтобы обнаружить демона, ученые применили метод спектроскопии характеристических потерь энергии электронов с разрешением по импульсу. Статья опубликована в журнале Nature. В 1952 году американские физики Дэвид Пайнс и Дэвид Бом описали коллективное поведение электронного газа в плазме, которое можно представить в виде квазичастицы, которую назвали плазмоном. Некоторые виды плазмонов уже научились регистрировать. В 1956 году Пайнс предположил, что в металлах могут существовать особые плазмоны, которые возникают при колебании электронов из разных зон в противофазе, что приводит к модуляции заселенности этих зон. Такие плазмоны назвали демонами: они не обладают ни массой, ни электрическим зарядом, да и со светом не взаимодействуют, — поэтому их крайне сложно зарегистрировать обычными методами. Группа физиков под руководством Петра Аббамонте (Peter Abbamonte), профессора Университета Иллинойса, изучала рутенат стронция Sr2RuO4. Этот металл обладает тремя вложенными зонами, пересекающими энергию Ферми, и поэтому может быть кандидатом на появление в нем демона. Ученые использовали метод электронной спектроскопии потерь энергии электронов с высоким разрешением по импульсу в режиме отражения. Этот метод позволяет измерять как поверхностные, так и объемные возбуждения в металле при ненулевой передаче импульса q, где сигнатура демона ожидалась наиболее четкой. Спектры потерь энергии электронов при большой передаче энергии и больших переданных импульсах — более 0,28 единиц обратной решетки — демонстрируют бесхарактерный энергонезависимый континуум. При малых переданных импульсах — q менее 0,16 единиц обратной решетки — ученые обнаружили широкую плазмонную особенность с максимумом в районе 1,2 электронвольта. Ученые обнаружили, что в низкоэнергетическом режиме, при q менее 0,08 единицы обратной решетки, метод выявляет акустическую моду. Дисперсия моды оказалась линейной в большом диапазоне импульсов, с групповой скоростью примерно в 100 раз больше скорости акустических фононов, которые распространяются со скоростью звука, но на три порядка меньше, чем для поверхностного плазмона, распространяющегося со скоростью, близкой к скорости света. Однако скорость моды находится в пределах 10 процентов от предсказанной расчетами скорости для демона. Как отмечают ученые, это возбуждение явно электронное и это как раз и есть демон, предсказанный Пайнсом 67 лет назад. Наблюдение демона стало возможным, благодаря высокому разрешению в миллиэлектронвольт в используемом методе. Однако для дальнейшего изучения демонов ученые предлагают повысить точность, используя высокоэнергетические электроны в сканирующем просвечивающем электронном микроскопе с высоким разрешением, работающем в расфокусированной конфигурации. Физики отмечают, что требуется новая теория демонов, которая точнее опишет полученные экспериментальные данные. Эти квазичастицы могут быть ответственны за возникновение сверхпроводимости и играть важную роль в низкоэнергетической физике многих многозонных металлах. Изучение демонов и других видов плазмонов важно для описания коллективного поведения электронов в разных веществах. Например, недавно мы писали как физикам удалось увидеть часть плазмонной матрицы плотности.