Химики из университета Глазго разработали универсальный алгоритм, способный переводить текст методик из научных статей в последовательность действий для автоматизации органического синтеза. С помощью разработанной программы исследователи автоматизировали синтез 12 химических соединений, включая лидокаин, передавая алгоритму в качестве вводных данных только тексты методик из научной литературы. Исследование опубликовано в журнале Science.
Развитие методов автоматизации происходит и в химии, в частности исследователи пытаются облегчить трудозатратный процесс синтеза веществ. Ученые создают системы, способные самостоятельно проводить реакции определенного типа. Однако заменить химиков-синтетиков роботами полностью пока нельзя, так как не существует стандартных операционных систем, которые могли бы как человек переводить информацию из методик в последовательность простых действий.
Хессам Мер (S. Hessam M. Mehr) с коллегами из университета Глазго разработали универсальный алгоритм, способный читать статьи, формируя последовательность действий для автоматизации органического синтеза. В тексте методики программа выявляла маркировочные слова, которые описывают процессы синтеза (добавить, смешать, отфильтровать, нагреть и тому подобные) и составляла их в контекстный алгоритм, по которому можно было синтезировать нужное вещество. Интерфейс программы позволял редактировать этапы алгоритма пользователям, не владеющим навыками программирования. Затем виртуальная машина преобразовывала этот текст в простые операции, которые могли выполняться роботами напрямую.
В тексте статьи алгоритм искал паттерны, которых он знал более 16 тысяч, по которым определял параметры синтеза вроде названий реагентов, нужных объемов и температур.
Последовательность действий без контекста вряд ли оказалась бы пригодной для автоматизации синтезов. Разработанный алгоритм умел «читать» статьи, понимая контекст, и преобразовывать сложные методики в элементарные команды для роботов. Виртуальная машина разбивала каждый из пунктов методики на простые операции, которые мог выполнить робот. Например, слово «перекристаллизовать» состояло из подопераций: нагрев, перемешивание и охлаждение, а время этой операции определялось временем охлаждения смеси.
Свои разработки исследователи опробовали с помощью робота Chemputer. Без какого-либо внешнего вмешательства человека система провела 12 синтезов, «прочитав» методики. Программа включала нужные насосы, крутила клапаны, подобрала колбу нужного объема, в которой проводила реакции, перемешивала, правильно отфильтровала, добавляла растворители в нужный момент, нагревала и разделяла несмешивающиеся жидкости. Выход лидокаина у автоматизированной системы составил 53 процента.
Авторы планируют развивать систему и научить ее распознавать именные реакции, автоматически исправлять ошибки перевода. Однако, по их словам, представленная система уже важный шаг к полной автоматизации синтеза — от текста к веществу.
Этим летом ученые из Ливерпульского университета представили робота-лаборанта, который мог передвигаться по лаборатории, брать нужную посуду и подбирать оптимальные концентрации для проведения химических реакций.
Исследователи мира также разрабатывают программы, предсказывающие результаты химических реакций. Например, четыре года назад система машинного обучения, разработанная американскими химиками, смогла предсказать результаты химических реакций лучше, чем это удавалось специалистам. А в 2018 году британские исследователи создали робота, способного проводить одностадийный органический синтез и предсказывать вероятности протекания реакций.
Алина Кротова
Концентрация некоторых из них превышает максимальную для жилых помещений
Концентрация аценафтена, фенантрена, пирена и перфтороктановой кислоты в пыли, собранной внутри МКС, в разы превосходит максимальные значения этих веществ, установленные для жилых помещений в США. В то же время концентрация многих стойких органических загрязнителей укладывалась в безопасный диапазон, но многократно превосходит медианные значения. Такие выводы содержит исследование, опубликованное в журнале Environmental Science & Technology Letters. Космонавты на МКС находятся в замкнутом пространстве, и для обеспечения безопасных условий работы воздух внутри станции должен быть чистым. Но даже при дыхании люди выделяют углекислый газ, аммиак, ацетон, уксусную кислоту и некоторые другие метаболиты. Из-за воздействия на организм ионизирующего излучения, невесомости, шума, вибрации, пониженного и повышенного содержания кислорода в воздухе состав и концентрации таких метаболитов не равноценны тем, что присутствуют в воздухе земных помещений. Кроме того, различные газы в воздушную среду МКС может выделять доставляемое туда оборудование, а также системы корабля, если случается их разгерметизация. Ученые под руководством Стюарта Харрада (Stuart Harrad) из Бирмингемского университета исследовали пыль, собранную из воздушной среды МКС, на присутствие в ней стойких органических загрязнителей — полибромдифениловых эфиров, новых бромсодержащих антипиренов, гексабромциклододеканов, фосфатных эфиров, полихлорированных бифенилов, полифторалкильных соединений и полиароматических углеводородов. Концентрации почти всех стойких органических загрязнителей на МКС укладывались в диапазоны, известные для жилых помещений США. При этом у многих веществ, особенно из групп полибромдифениловых эфиров и полиароматических углеводородов, они превосходили медианные значения для таких помещений на порядки. Например, концентрация полибромдифенилового эфира BDE-99 в пыли на МКС составила 27000 нанограмм на грамм, а ее медианное значение для домашней пыли США — 580 нанограмм на грамм. Концентрации таких полиароматических углеводородов как аценафтен, фенантрен и пирен в разы превосходили не только медианные, но и максимальные значения, установленные для американских домов (930 против 25, 830 против 390 и 1600 против 300 нанограмм на грамм соответственно). Аналогичная ситуация наблюдалась и для перфтороктановой кислоты, концентрация которой в пыли на МКС составила 2600 нанограмм на грамм. Медианное значение концентрации этого вещества в домах США — 140 нанограмм на грамм, максимально известное — 1960 нанограмм на грамм. Авторы отметили, что впервые обнаружили стойкие органические загрязнители во внеземной среде. Их источники невозможно установить доподлинно, но предположительно их высокое содержание может быть связано с огнезащитной обработкой поверхностей, защитой хрупких грузов с помощью пенополиуретановой пены и гидроизоляционной обработкой против грибка. С учетом того, что используемые материалы оказались не слишком устойчивыми во внеземных условиях и в больших количествах попали в воздух обитаемых помещений, исследователи предлагают выбирать другие материалы для упаковки и защитной обработки оборудования. Для токсикологического контроля МКС важно исследовать не только ее внутреннюю воздушную среду, но и состояние внешней обшивки. Ученые выяснили, что космическая пыль, прилипающая к ней, является биохимически активной средой, и обнаружили в ней жизнеспособные микроорганизмы.