С помощью компьютерного моделирования физики показали, как и почему стекло становится твердым при охлаждении. Оказалось, что при превращении переохлажденной жидкости в аморфное твердое тело в материале возникает обширная разветвленная сеть частиц, на которые действует нескомпенсированная сила со стороны соседей. Это приводит к возникновению дальнодействующих корреляций в поле механических напряжений внутри стекла. Именно такие сети и делают стекло твердым, несмотря на его аморфную структуру, пишут ученые в Nature Communications.
В структуре стекол, в отличие от структуры кристаллов, дальнего порядка нет. Это аморфные системы — положение и ориентация соседних элементов (например тетраэдров SiO4 в случае силикатного стекла) в них жестко связаны, но при увеличении расстояния между элементами эта связь полностью теряется. В кристаллах именно система жестких химических связей обеспечивает твердость и не дает им разрушаться, а что служит заменой кристаллической структуре в аморфных телах и делает твердыми их, до сих пор до конца не понятно.
В 2018 году французский физик Эрик Дежюли предложил теоретическое объяснение твердости стекол при температуре абсолютного нуля. Его теория связывает напряженное состояние в аморфном твердом материале в отсутствие внешней нагрузки и температурных флуктуаций с размерностью пространства и показывает, что, несмотря на отсутствие упорядоченной структуры, в аморфном материале есть дальнодействующие корреляции в поле внутренних напряжений. Для любых аморфных твердых тел корреляционная функция изменяется по степенному закону 1/rd для d-мерного пространства. Однако, несмотря на то, что эта теория была подтверждена и с помощью эксперимента, и с помощью компьютерного моделирования, строгого объяснения твердости аморфных тел при ненулевой температуре она не дает.
Чтобы объяснить возникновение твердости у стекол при температуре выше нуля, физики из Японии, Китая и Индии под руководством Хадзимэ Танаки (Hajime Tanaka) из Токийского университета смоделировали на компьютере процесс перехода переохлажденной жидкости в стеклообразное состояние при охлаждении ниже температуры стеклования. Использованная учеными компьютерная модель представляла собой двумерную или трехмерную систему, состоящую из нескольких тысяч твердых сферических частиц двух размеров, которые отталкиваются друг от друга по гармоническому закону.
В результате моделирования авторам работы удалось в деталях изучить, что происходит в процессе неравновесного превращения жидкости в твердую стеклообразную аморфную структуру: как при переходе меняются поле внутренних напряжений внутри материала и вид корреляционной функции. Эти наблюдения физики связали с изменением структуры материала.
Оказалось, что при снижении температуры до критического значения в напряженной системе появляется большое количество частиц, на которые со стороны других частиц действует сила, которую не удается скомпенсировать. Если число таких частиц с остаточной нескомпенсированной силой достигает перколяционного предела, то поля напряжений для отдельных частиц начинают перекрываться таким образом, что они образуют длинные связанные цепочки, проходящие через весь материал. В результате возникновения сложных разветвленных сетей влияющих друг на друга частиц в системе возникают механические корреляции. Упорядоченная кристаллическая структура при этом не формируется, но возникает сеть механических связей между отдельными элементами.
Авторы работы таким образом показали, что нетривиальная самоорганизация в неупорядоченных структура может приводить к появлению дальнодействующих корреляций в полях механических свойств стекла, а следовательно быть причиной твердости аморфных материалов. Ученые отмечают, что результат тем более удивителен, что в системе в результате образования разветвленной сети частиц с нескомпенсированной нагрузкой возбуждается большое число ангармонических флуктуаций, которые, тем не менее, не мешают возникновению дальнодействующих механических корреляций. По словам авторов, их открытия помогут лучше понять механику аморфных твердых тел, что в будущем поможет при создании стекол для смартфонов, компьютеров или посуды.
В прошлом году ученым удалось создать тонкие неорганические стекла, которые можно растягивать, сжимать и изгибать без появления трещин при комнатной температуре. Для этого ученые использовали аморфный оксид алюминия, из которого пока, правда, можно делать лишь небольшие тонкие пленки.
Александр Дубов
Редкий процесс рассмотрели в совместном массиве данных экспериментов CMS и ATLAS
На Большом адронном коллайдере впервые нашли убедительные следы редкого распада бозона Хиггса на Z-бозон и фотон. Его увидели со статистической точностью в 3,4σ в объединенных данных экспериментов CMS и ATLAS по протон-протонным столкновениям за 2015-2018 года. Обнаруженный сигнал совпал с предсказаниями Стандартной модели, но в будущем подробное изучение распада поможет в поиске различий между теорией и экспериментом. О своих результатах физики рассказали на конференции LHCP-2023, подробнее об открытии сообщается в сопровождающей записке. Бозон Хиггса — знаменитая элементарная частица, объясняющая существование инертной массы у ряда частиц Стандартной модели. Существование этой частицы теоретически предсказал Питер Хиггс еще в 1964 году, а в 2012 году ее обнаружили эксперименты CMS и ATLAS на Большом адронном коллайдере. Бозон Хиггса стал последней экспериментально открытой частицей Стандартной модели, но на этом его исследование не закончилось. Те же самые ATLAS и CMS продолжили изучать свойства бозона, в числе которых — каналы его распада и сила его взаимодействия с другими частицами. Почти все предсказываемые Стандартной моделью свойства бозона Хиггса удалось подтвердить. Но некоторые из распадов этой частицы чрезвычайно редкие, поэтому чтобы увидеть и изучить их необходимо накопить особенно большой массив экспериментальных данных. Один из таких распадов — канал в один переносчик слабого взаимодействия Z-бозон и один фотон. Согласно теории, для бозона Хиггса с массой в 125 гигаэлектронвольт доля этого распада среди всех остальных — примерно 0,15 процента. Именно в такие редкие распады физики изучают в поисках расхождения экспериментальных данной со Стандартной моделью, у которой не получается объяснить ряд проблем в современной физике. Отклонение вероятности такого распада от стандартных теоретических предсказаний могло послужить аргументом в пользу моделей, в которых бозон Хиггса на самом деле нейтральный скаляр или сложная частица. Это же может указать на правдивость теорий с дополнительными еще не открытыми бесцветными заряженными частицами, которые взаимодействуют с бозоном Хиггса через петлевые поправки. Теперь же ученым впервые удалось рассмотреть распад бозона Хиггса на Z-бозон и фотон в результатах экспериментов CMS и ATLAS. Физики проанализировали данные, накопленные за 2015-2018 года в ходе протон-протонных столкновений при энергии в системе центра масс в 13 тераэлектронвольт. Z-бозон искали через продукты уже его распада на мюонную или электрон-позитронную пару с массой больше 50 мегаэлектронвольт. Сам распад идентифицировали через пик инвариантной массы пары Z-бозона и фотона в окрестности массы бозона Хиггса — 125 гигаэлектронвольт. Для увеличения чувствительности анализа данных к изучаемому распаду все события-кандидаты разделяли на несколько категорий в зависимости от канала рождения бозона Хиггса, накладывали ограничения на кинематику продуктов распада, а также использовали машинное обучение. В результате физики увидели искомый распад со статистической точностью в 2,2σ для данных ATLAS и 2,6σ для данных CMS, что в сумме дало статистическую точность в 3,4σ. Также ученые оценили силу сигнала µ — отношение наблюдаемого в эксперименте произведения сечения и вероятности распада бозона Хиггса на Z-бозон и фотон к предсказываемому Стандартной моделью значению. Полученное значение µ = 2.2 ± 0.7 хоть и говорит о результате в два раза больше теоретических предсказаний, но из-за высокой погрешности согласуется с теорией со статистической точностью в 1,9σ. При этом доля изучаемого распада бозона Хиггса среди других его распадов оказалась равной (3.4 ± 1.1) × 10−3. Таким образом, для проверки предсказаний Стандартной модели в данном канале распада все еще требуется больше экспериментальных данных. Это далеко не первый редкий распад бозона Хиггса, который зарегистрировали на Большом адронном коллайдере. К примеру, ранее те же эксперименты CMS и ATLAS увидели канал распада на два мюона. А о том, как и почему для изучения таких редких распадов собираются строить электрон-позитронную хиггсовскую фабрику, можно почитать в нашем материале «100 ТэВ на перспективу».