Инженеры сконструировали микроканалы, в которых жидкость управляемо двигается без помощи внешних насосов. Насосом служат сами стенки канала, на которых расположены микромоторы Януса, активация происходит при помощи ультрафиолета. В будущем это упростит создание чипов с микрофлюидным охлаждением, так как позволит обойтись без механических помп. Статья опубликована в ASC Nano.
В технике несколько столетий используют насосы самого разного устройства: поршень и клапаны, винт, разные виды турбин. Механизмы работы этих деталей отличаются, но один принцип неизменен: каждая из них — это движущееся твердое тело, которое передает движение окружающей жидкости. Механические детали могут быть маленькими, подобно часовым, но они никогда не приблизятся по размеру к внутренним элементам микроэлектроники, где счет идет на микроны и нанометры.
Между тем, перегрев — одна из ключевых проблем микроэлектроники. Эффективность водяного охлаждения можно сильно увеличить, если подводить его не к наружному теплообменнику микросхемы, а внутрь нее. Для этого инженеры пробуют протравливать в устройствах микроканалы, по которым помпой прокачивают жидкость. Однако, использовать внешнюю помпу неудобно: почти всегда она будет гораздо больше самого изделия, а механические детали шумят и склонны ломаться.
Тинтин Юй (Tingting Yu) из Института интеллектуальных систем Макса Планка и его коллеги придумали, как заставить жидкость двигаться вдоль микроканалов при помощи микромоторов Януса. Микромоторы Януса — это семейство двигателей, устройство которых принципиально отличается от механических насосов. В них нет движущихся частей, а поток создается химическим способом. Этих способов несколько, но в данном случае инженеры использовали самый простой — фотохимическое разложение воды.
Один бок столба диаметром два микрона и высотой полтора выполнили из диоксида титана, а второй — из золота. Под воздействием ультрафиолета вода в присутствии этой пары разлагается: у золотой стороны появляется водород, а у оксидной — кислород. Из-за наличия областей с разной концентрацией веществ вокруг столба возникают диффузиоосмотические потоки. Оказалось, что суммарный поток жидкости всегда направлен от оксида титана к золоту.
Далее ученые расположили ансамбль таких столбов на стенах микроканала, поместили частицы-трекеры и запустили в систему воду. После включения ультрафиолета трекеры, а значит, и вода, потекли по направлению золотых половин столбов. Если в канале столбы расположить не симметрично, а зеркально, золотыми сторонами в разные стороны, то поток становился разнонаправленным. Пиковая скорость движения составила четыре микрона в секунду, разница давления в 240-микронном канале была равна один микропаскаль на микрон.
Исследование носит в первую очередь фундаментальный характер. Химические микромоторы для жидкости конструировали в лабораториях и ранее, но создать направленный и управляемый поток было проблемой. Теперь инженерам предстоит выяснить точную причину, почему поток направлен от оксида титана к золоту, а также почему скорость потока сильно зависит от размера пробелов между столбами в микроканалах. В перспективе работы в этом направлении позволят создавать чипы с интегрированным жидкостным охлаждением, что откроет дорогу к дальнейшему увеличению их мощности и плотности элементов.
Микромоторы Януса хороши для гидросистем масштаба микрон и нанометров, но у них есть конкурент в виде молекулярных машин. Для более крупных каналов есть другой нетрадиционный вид насоса: подвижные реснички, аналогичные тем, что находятся в животном эпителии.
Василий Зайцев
Роль магнитного поля сыграло туннелирование в оптической решетке
Физики впервые экспериментально сгенерировали дробные квантовые состояния Холла в двумерной системе ультрахолодных атомов. Как сообщается в Nature, в созданных состояниях удалось пронаблюдать основные свойства дробных холловских: подавление двухчастичного взаимодействия, сильные (анти)корреляции плотности и дробную величину аналога холловской проводимости. Дробный квантовый эффект Холла возникает в двумерном электронном газе в сильных магнитных полях. Одноименно заряженные электроны отталкиваются друг от друга, однако не могут разлетаться прямолинейно из-за сильного магнитного поля, которое резко закручивает импульс частиц и порождает сложное коллективное движение в системе: поведение отдельных частиц не независимо, а наоборот сильно скоррелировано. В таких ситуациях вместо рассмотрения каждого электрона в отдельности изучают коллективную волновую функцию системы, выделяя основное состояние системы (низшее по энергии) и возбужденные состояния (с энергией выше основного) — квазичастицы. При этом эффективная масса или заряд последних не обязаны совпадать с характеристиками исходных частиц. Так, еще в восьмидесятых годах прошлого века было установлено, что в дробном квантовом эффекте Холла заряд собравшихся из коллективных электронных возбуждений квазичастиц оказывается дробным по отношению к заряду самих электронов. Этим можно объяснить наблюдаемую дробную холловскую проводимость: в обычной ситуации эта величина в единицах отношения квадрата заряда электрона к постоянной планка (обратный квант электрического сопротивления) равна целому числу, а в дробном эффекте Холла принимает нецелые значения. Более того, даже статистика таких квазичастиц может быть промежуточной по отношению к стандартной классификации элементарных частиц на бозоны и фермионы: состояния не обязаны быть строго симметричными или антисимметричными по отношению к перестановкам. Такие экзотические свойства делают дробные холловские состояния перспективным инструментом для квантовых вычислений. При этом вместо того чтобы создавать и контролировать сильные магнитные поля во многоэлектронных системах, физики стремятся создать аналогичные по свойствам, но легко контролируемые квантовые системы — например, из ультрахолодных атомов в оптической решетке. Тем не менее, до недавнего времени об экспериментальной реализации дробных холловских состояний в системах ультрахолодных атомов не сообщалось. Теперь физики из Австрии, Бельгии, Германии, США и Франции под руководством Маркуса Грейнера (Markus Greiner) из Гарвардского университета смогли создать дробные холловские состояния в системе двух ультрахолодных атомов рубидия-87. Для этого исследователи размещали атомы в квадратной оптической решетке (на пересечении двух лазерных лучей) размером в четыре ячейки с каждой стороны, и на протяжении эксперимента контролировали их положение (с разрешением в одну ячейку) с помощью флуоресцентных изображений. Первоначально атомы находились соседних краевых ячейках решетки. Затем авторы, контролируя параметры ячейки, по очереди адиабатически медленно создавали туннелирование по каждой из осей решетки, симулируя тем самым поведение заряженных частиц в сильном магнитном поле. В результате пара атомов рубидия переходила в коллективное состояние, которое физики фиксировали и после анализировали сходство с состояниями дробного холловского типа по свойствам получившегося пространственного распределения плотности и зависимости этих свойств от величины эффективного магнитного поля. В результате авторы обнаружили в итоговых состояниях все ключевые характеристики дробных холловских состояний. Во-первых, удалось зарегистрировать подавление двухчастичного взаимодействия: начиная с критических значений магнитного потока (при переходе к коллективному состоянию) в несколько раз (по сравнению с обычным состоянием) снижалась вероятность наблюдать оба атома в одной и той же ячейке решетки. Во-вторых, эффективная холловская проводимость приняла дробное значение — этот параметр исследователи оценивали через производную средней плотности атомов в центральных четырех ячейках по величине эффективного магнитного потока. Наконец, в-третьих, при надкритической величине эффективного поля кратно возрастали значения (анти)корреляции плотности по всей оптической решетке, что свидетельствует о переходе к зависимому, коллективному поведению системы. При этом сходство оказалось не только качественным, но и количественным: измеренные величины совпали с теоретическим прогнозом для дробного холловского состояния в пределах погрешности, что позволяет заявить о надежной регистрации этого состояния в системе ультрахолодных атомов. Кроме того, чтобы оценить качество адиабатической подготовки коллективного состояния из исходного, в части опытов физики вместо фиксации результата проделывали подготовку в обратной последовательности, от конечного состояния к начальному. Вероятность обнаружить в этом «новым начальном» состоянии исходное начальное исследователи использовали как количественную оценку адиабатичности своих манипуляций: эта величина составила около 43 процентов. По словам авторов, экспериментальный результат является первым шагом в освоении контролируемых манипуляций с сильно скоррелированными состояниями ультрахолодных атомов и в будущем может оказаться практически полезным для квантовых технологий. Ранее мы рассказывали о том, как орбитальное движение атомов повлияло на формирование ультрахолодных димеров в оптических решетках и о том, как свет помог собрать ультрахолодную молекулу из двух атомов.