Физики из Германии создали источник инфракрасных одиночных фотонов на основе кремния: он может генерировать до ста тысяч фотонов в секунду. Такой подход позволяет объединить квантовую криптографию с современными кремниевыми технологиями. Работа опубликована в журнале Optics Express.
Квантовое распределение ключа — это абсолютно безопасный способ обмена секретными ключами между пользователями. Безопасность этого метода основана на фундаментальных законах квантовой физики: процесс измерения квантовой системы изменяет ее состояние. Злоумышленник, который попытается украсть ключ, должен каким-то образом измерить его, но измерение вводит аномалии, которые видят и легитимные участники протокола. Таким образом, пользователи могут раскрыть и проверить часть полученного ключа и убедиться, что никто, кроме них самих, его не измерял.
Большинство протоколов квантовой криптографии основаны на передаче одиночных фотонов. Это необходимо для секретности: если ключ закодирован в большом количестве частиц, то злоумышленник может забрать часть фотонов себе и проделать затем те же манипуляции, что и легитимные пользователи, и узнать ключ, а о его наличии другие не узнают. Однако на сегодняшний день источники одиночных фотонов — это очень сложные физические системы, которые не всегда хорошо сочетаются с современной электроникой, а генерируемые фотоны плохо распространяются по оптоволокну.
Ученые из Центра им. Гельмгольца Дрезден-Россендорф и Дрезденского технического университета под руководством Михаэля Холленбаха (Michael Hollenbach) разработали систему генерации одиночных фотонов на основе кремниевых чипов, на которых строится современная электроника.
Чтобы заставить кремний генерировать фотоны в инфракрасном диапазоне для волоконно-оптической связи, ученые поместили атомы углеродом в кремний с помощью ускорителя. В результате, два соседних атома углерода вместе с атомом кремния образовали искусственный атом, который может излучать фотоны (такие объекты в кремнии называются G-центрами). При облучении лазером искусственный атом испускает инфракрасные фотоны с длинной волны 1,3 микрона.
Полученные фотоны отлично распространяются по стекловолокну — это перспективное решение в том числе и для реализации протоколов квантовой криптографии.
Разработанный прототип может стабильно генерировать около 100 тысяч одиночных фотонов в секунду. Однако, для поддержания этой системы ее необходимо охладить до гелиевых температур, около 4 кельвин. Такой подход поможет внедрить не только системы квантовой криптографии, но и квантовые процессоры, ретрансляторы и датчики в уже существующие системы, основанные на кремниевых технологиях.
В 2016 году в России была создана первая банковская линия квантовой связи, а в 2017 году ученые из МГУ представили квантовый телефон. На данный момент Российский квантовый центр, Сбербанк и фонд «Сколково» строят на территории инновационного центра крупнейшую в России линию квантовой защищенной связи суммарной протяженностью около 250 километров. Больше про квантовую криптографию вы можете прочитать, например, в материале «Квантовые технологии».
Михаил Перельштейн
Физикам помогла простая математическая модель
Британские теоретики попытались разобраться, почему при слишком мелком помоле эспрессо получается невкусным. Для этого они построили простую модель протекания жидкости через два канала с пористым молотым кофе. Оказалось, что слишком мелкий помол запускает механизм с положительной обратной связью, из-за которого жидкость течет только по одному из каналов. Кофе во втором канале при этом остается недоэкстрагированным. Исследование опубликовано в Physics of Fluids. Для приготовления эспрессо нужно пропускать достаточно горячую воду под большим давлением через фильтр с молотым кофе. Люди научились готовить эспрессо еще в XIX веке, и с тех пор методом проб и ошибок сложилась практика получения наилучшего вкуса кофе. Однозначно формализовать качество кофе непросто, но чаще всего специалисты ориентируются на уровень (или выход) экстракции кофе — массовую долю растворившихся в воде химических компонентов зерен. В попытках разобраться в том, какая физика стоит за приготовлением эспрессо, несколько лет назад Фостер с коллегами провели экспериментальное и численное исследование этого процесса. Ученые уделили особое внимание помолу: модель предсказывала, что, чем меньше размер зерен, тем больше экстракция. Но эксперименты показали, что так происходит лишь до определенного порога, меньше которого уровень экстракции начинает снижаться. Этот эффект известен баристам давно. Его объясняют тем фактом, что при слишком мелком помоле в таблетке с кофе пробиваются паразитные каналы, через которые вода почти полностью утекает, игнорируя остальную кофейную массу. Фостер с коллегами учли этот факт, дополнительно наложив на модель ограничение на площадь экстракции. Тем не менее, остается проблема учета этого эффекта из первых принципов. Уильям Ли (William Lee) из университета Хаддерсфилд был одним из соавторов статьи Фостера. Ранее он с коллегами уже проводил независимые вычисления, связанные варкой кофе. На этот раз целью его группы стал вопрос о том, как именно происходит неравномерная экстракция при варке методом эспрессо. Для ответа на этот вопрос, физики построили довольно простую модель просачивания жидкости через два канала с пористым веществом. За основу они взяли уравнение Козени — Кармана, выведенное для упаковки сферических частиц. Вместе с ним авторы учли тот факт, что вещество помола экстрагируется в жидкость, уменьшая объем порошка. Решая полученные дифференциальные уравнения, физики смогли качественно воспроизвести главный эффект: по мере уменьшения размера зерен выход экстракции также спадает. Динамика потоков по каждому из каналов позволила понять, почему так происходит. Оказалось, все дело в механизме положительной обратной связи: чем больше протекает воды через канал, тем больше извлекается вещества и тем больше становится его пористость, а значит тем меньше сопротивление канала. В какой-то момент поток в одном из каналов становится максимальным, а в противоположном — падает почти до нуля. Несмотря на качественное объяснение, которое дала модель, ее количественные оценки разошлись с экспериментальными данными. Этот факт авторы объяснили простотой модели. В частности, они не учли стратификацию кофейной массы, а также использовали мономодальное распределение частиц, вместо бимодального, которым обладает реальный помол. Помимо усложнения модели, физики планируют включить в нее альтернативное объяснение эффекта, связанного с мельчанием помола, который заключается в закупоривании каналов зернами. Кофе — это один из немногих продуктов и в целом аспектов человеческой деятельности, который исследует огромное количество научных дисциплин от математики до экспериментальной психологии. Подробнее об этих исследованиях читайте в серии материалов и блогов «Сварен на калькуляторе», «Кофе (не) убьет», «Чашечку кофе?», «Кофе: проклятие четырех чашек».