Лазер научили «видеть» сквозь рассеивающую среду

David Lindell & Gordon Wetzstein / Nature Communications, 2020
Физики научились с помощью лазера получать трехмерное изображение объекта, находящегося за двухсантиметровым слоем полиуретановой пены. Луч лазера проходил по поверхности рассеивающей среды, и по отраженным фотонам ученые восстанавливали форму и положение предмета. Упрощенная модель обратной свертки с учетом процесса рассеивания позволила сократить время расчетов с использованием обычного компьютера до 50 миллисекунд, а сама техника не требовала знаний о начальном положении объекта и оказалась применима для большого диапазона расстояний. Статья опубликована в журнале Nature Communications.
Рассеивание света — одно из главных препятствий для эффективной работы лидаров. Эти приборы используют информацию о времени движения направленного излучения до и после отражения от наблюдаемого объекта для создания его трехмерного изображения и определения его положения в пространстве. Однако если между лидаром и предметом окажется лишь частично прозрачная среда, например, туман, пыль или дым, то определить положение объекта может быть сложно или вовсе невозможно. С такими ограничениями важно уметь бороться, ведь лидары используются в беспилотных автомобилях, а с похожими проблемами сталкиваются астрономы (из-за неоднородностей в атмосфере) и даже медики (в рамках различных техник медицинской визуализации).
Поэтому необходимо создавать техники создания изображений в условиях, когда между объектом и наблюдателем находится рассеивающая среда. Уже сейчас существует ряд методов, позволяющих решить проблему рассеивания: в некоторых используются так называемые баллистические фотоны, которые не изменяют направление движение при прохождении сквозь неоднородную среду, в других с рассеивателями борются с помощью моделирования их оптических свойств и восстановления исходного сигнала. Однако для эффективной работы таких техник ученым необходимо заранее знать примерное местоположение объекта, их эффективность резко падает с увеличением расстояний, а восстановление изображения с помощью моделирования требует слишком много времени.
Теперь Дэвид Линделл (David Lindell) и Гордон Ветцштейн (Gordon Wetzstein) из Стэнфордского университета реализовали технику формирования трехмерного изображения объекта за рассеивающей средой с помощью лазера и крайне чувствительного детектора отраженных фотонов. В качестве рассеивателя физики использовали двухсантиметровый слой из полиуретановой пены, который они поточечно (в рамках сетки размером 32 × 32) облучали лазером и наблюдали за отражением пучка света. Часть фотонов, которые отразились от объекта за рассеивающей средой, снова проходили через слой пены, возвращались в исходную точку излучения и регистрировались однофотонным лавинным диодом. По данным детектора для каждой точки формировалась зависимость частоты регистрации фотонов от времени с момента их излучения, по которой восстанавливалась трехмерная «карта» отраженного от объекта света (фотоны, которые отразились от самой среды, исключались).
Ранее с рассеиванием света в тумане справился лидар, который научили различать невидимые для человеческого взгляда предметы. А совсем недавно физики создали лидар, который смог различить метровые детали на расстоянии 45 километров.
Никита Козырев