Исследователи обнаружили новые нуклеотидные последовательности, которые помогают рыбам восстанавливать поврежденные плавники и другие части тела, говорится в исследовании, опубликованном в журнале Science. Для этого ученые исследовали рыбок данио (Danio rerio) и нотобранх Фурцера (Nothobranchius furzeri), которые способны к регенерации. Среди последовательностей, которые были активны у каждой из рыб во время восстановления тканей, оказались и регуляторные: изменения в них нарушили регенерацию нотобранха.
Не все позвоночные могут регенерировать ткани: эта функция у разных видов менялась в процессе эволюции. Например, костные рыбы могут восстанавливать даже желудочки сердца и спинной мозг, в то время как большинство млекопитающих вовсе не способно к регенерации. Регенерация, поэтому, — морфологически неоднородный признак.
Морфологические различия, в свою очередь, могут объясняться не только разными генами, но и разной активностью одних генов. При этом сами гены занимают небольшую часть генома (например, у человека — всего два процента), а среди оставшихся последовательностей много энхансеров — генетических элементов, которые стимулируют работу соответствующих генов.
Изучить то, какие гены и энхансеры отвечают за регенерацию рыб, решили биологи из Института медицинских исследований имени Стоуэрса под руководством Алехандро Алварадо (Alejandro Alvarado). Исследование провели на рыбках данио рерио (Danio rerio) и нотобранх Фурцера (Nothobranchius furzeri): эти два вида разделились 230 миллионов лет назад. Чтобы выяснить, какие последовательности, связанные с регенерацией, сохраняются в процессе эволюции, а какие — характерны для отдельных видов, ученые сравнили активность генетических элементов двух рыб.
Активность генов исследовали при помощи методов ChIP-seq и RNA-seq — они основаны на секвенировании ДНК. Для ChIP9-seq геном фрагментируется, и из него выделяются только те последовательности, которые связаны с белками-метками активной ДНК. Чтобы отделить ДНК, связанную с этими метками, используют шарики, покрытые антителами к метке. Последовательность «прилипает» к шарику вместе с белком, а остальные фрагменты генома смывают. Все выделенные последовательности секвенируют. При RNA-seq секвенируют не ДНК, а РНК. В результате получают только последовательности, которые были активны во время выделения нуклеиновых кислот из клеток.
Оказалось, что совпадающих генов у рыбок не так много: меньше половины всех активных генов для каждого вида (p = 6,2 × 10-98). Это свидетельствует о том, что механизм регенерации сильно изменился в ходе эволюции. Ученые выбрали один из общих генов двух рыбок (inhba) и проанализировали его активность у млекопитающих: у способной к регенерации каирской мыши (Acomys cahirinus) и у домовой мыши (Mus musculus), которая не может восстанавливать свои ткани. Для этого взяли взяли данные из других исследований: оказалось, что ген inhba после повреждения уха был активен у каирской мыши, но не у домовой.
Среди активных во время регенерации последовательностей оказались не только гены. Ученые обнаружили энхансер, который регулирует работу гена inhba. Они удалили эту последовательность из генома нотобранха, и это привело к нарушению хвостовой и сердечной регенерации. Тогда энхансер нотобранха заменили на аналогичную последовательность из человеческого генома, что также препятствовало регенерации.
Полученные данные показывают, как изменения в регуляторной последовательности повлияли на активность одних и тех же генов и способность к регенерации. Исследователи заключили, что на возможность восстанавливать свои ткани разных позвоночных значительно влияют не только сами гены, но и их энхансеры. Кроме того, в ходе эволюции сохранились лишь немногие гены, которые работают во время регенерации — и в основном они видоспецифичны.
На данио рерио часто изучают процесс регенерации. Например, ученые вывели линию трансгенных рыбок, у которых все клетки покровного эпителия имели свой цвет. Клетки испускали красный, зеленый и синий цвета в случайных комбинациях из-за синтеза флуоресцентных белков. Так исследователи получили возможность наблюдать за каждой конкретной клеткой во время восстановления ткани.
Анна Муравьева
Им оказались латеральные столбы околоводопроводного серого вещества
Немецкие исследователи выяснили, что чувством щекотки и игривостью управляют латеральные части околоводопроводного серого вещества мозга. Для этого они щекотали крыс и играли с ними, при этом регистрируя активность мозговых структур. Отчет о работе опубликован в журнале Neuron.