Прионы-передатчики нейродегенеративных заболеваний, и прионы, которые повреждают нейроны, — это разные молекулы, сообщается в Proceedings of the National Academy of Sciences. Это выяснилось в ходе экспериментов, в которых к питательной среде культур нервных клеток добавляли либо экстракт очищенных прионов (переносчики инфекций), либо гомогенизированную ткань мозга животных, демонстрировавших симптомы прионных заболеваний, в том числе нейродегенерацию. В первом случае клетки в культурах оставались нетронутыми, во втором повреждались.
Прионы — это белковые инфекционные агенты, а от прочих протеинов они отличаются способностью принимать очень устойчивые конформации и «заражать» ими соседние молекулы такого же состава. В результате белки особой, патологической конформации образуют скопления и деформируют клетки, в которых находятся. Особенно часто это происходит в нервных клетках, и многие прионные болезни поражают мозг. Повреждения получаются очень сильными и необратимыми, и больной, как правило, погибает. Лечения прионных заболеваний пока не существует.
Прионные заболевания могут быть наследственными, если имеются мутации в генах соответствующих белков. Кроме того, ими можно заразиться, если съесть мозг или мясо инфицированных особей (термическая обработка и многие пищеварительные ферменты, как правило, не разрушают прионные скопления) или вступить в контакт с жидкостями их тела. Однако на молекулярном уровне детали заражения прионными инфекциями еще неясны.
Исследователи из Университетского колледжа в Лондоне во главе с Джоном Коллинджем (John Collinge) проверили, как действуют на первичные культуры нейронов (то есть «готовые» нервные клетки, изъятые непосредственно из организма животного) новой коры больших полушарий и гиппокампа мышей различные прионы.
К питательной среде, в которой находились одни культуры, исследователи на 72 часа добавляли в разных концентрациях очищенные палочковидные скопления молекул прионного белка, кодируемого геном Prnp, выделенные из мозга мышей с симптомами прионного нейродегенеративного заболевания (от 107,7 до 108,1 инфекционных единиц на миллилитр). В других случаях вместо очищенных белков использовали гомогенизированную ткань мозга больных мышей, в ней содержалось от 104,2 до 105,7 инфекционных единиц прионов на миллилитр. Наконец, в часть культур ввели гомогенаты мозга здоровых животных, куда предварительно добавили очищенные «заразные» прионные белки. Для контроля использовали белки со «здоровой» конформацией, не способные инфицировать клетки.
За состоянием нейронов в культуре — количеством, длиной и степенью ветвления их отростков, а также тем, живы ли они, наблюдали с помощью флуоресцентной микроскопии: подбирали к молекулам, характерным для разных регионов и функциональных состояний нервной клетки, антитела, связанные с флуоресцентными белками, дающими свечение разных цветов, и смотрели, где и с какой интенсивностью оно проявится.
Длина отростков нервных клеток и количество выростов на них уменьшались только в одном случае — когда к культуральной среде добавляли гомогенат мозга мышей с прионным заболеванием. Очищенный прион из тканей больных животных, в том числе в составе гомогената мозга здоровых грызунов, не вредил нейронам, как и очищенный «безопасно сложенный» прионный белок из них. Нейротоксический эффект гомогенизированного мозга больных мышей исчезал под действием двухпроцентного натрий лауроилсаркозина — вещества, которым в ряде случаев обрабатывали гомогенаты. При этом количество молекул инфицирующего приона не снижалось.
Из этих данных исследователи сделали вывод, что у прионов функция заражения клеток и токсическое действие на эти клетки не связаны жестко друг с другом. Вероятно, они обеспечиваются различными типами молекул и (или) формами их скоплений. Видимо, прионы, образующие палочковидные скопления, нетоксичны для нейронов, а белки в составе скоплений какой-то другой формы, напротив, им вредят. Известно, что плохо очищенные прионы повреждают нервные клетки, но в предыдущих исследованиях не уточнялось, какой формы должны быть их группы, чтобы быть токсичными. Это и непросто установить: в таких смесях встречаются прионные скопления самых разных форм и размеров. Новые исследования должны быть направлены на то, чтобы все-таки это проверить.
Не вызывающие заболеваний прионы уже находили. В 2016 году итальянские ученые выделили из мозга овец, больных почесухой (скрейпи), молекулы PrPSc, размножили их, «адаптировали» под строение прионов у восприимчивых к скрейпи рыжих полевок (Myodes glareolus) и попробовали этими веществами инфицировать грызунов. Одна из разновидностей PrPSc овец по какой-то причине не могла спровоцировать у полевок почесуху — вероятно, из-за особенностей структуры молекулы.
Светлана Ястребова
На что похожи и на что способны пять искусственных зародышей человека
Сорок лет назад британские биоэтики постановили: не стоит выращивать человеческие эмбрионы in vitro дольше 14 дней. Эмбриологи тогда спорить не стали — ни у кого и так не получалось продержать зародыш в лаборатории дольше недели. С тех пор техники культивирования изменились, и вот уже целых пять исследовательских групп одновременно подошли к границе 14 дня вплотную. Правда, неясно, нарушили они установившееся правило или нет — и как это правило теперь вообще применять. Двухслойный стандарт Через две недели после оплодотворения человеческий зародыш все еще сложно увидеть невооруженным глазом — он размером в десятую часть миллиметра. Но еще сложнее разглядеть в нем будущего человека. Бóльшую часть бугорка, прикрепившегося к матке, занимают внезародышевые ткани — то есть структуры, которые обеспечивают существование человека внутри матери и не имеют никакого отношения к его жизни после появления на свет. Больше всего места занимает трофобласт — самый внешний из внезародышевых слоев. Рыхлое скопление клеток, которое врастает в стенку матки и образует там «детскую» часть плаценты. Внутри трофобласта — полость хориона, крупный пузырь с жидкостью. Дальше — два пузыря поменьше, амнион (в ходе развития он разрастется в самую крупную из зародышевых оболочек) и желточный мешок (он со временем станет частью кишечника). Между ними зажат, собственно, зародыш — два слоя клеток. В нем еще нет ни органов, ни тканей, ни даже осей тела. Можно распознать только верх и низ (будущие спина и живот): верхний гипобласт помогает строить амнион, нижний эпибласт врастает в желточный мешок. В начале третьей недели развития в эпибласте должно возникнуть углубление — первичная полоска. Она тянется вдоль всего эмбриона и позволяет увидеть, где будут голова и хвост, а также правая и левая стороны. Через углубление первичной полоски клетки мигрируют между слоями, образуя третий слой зародыша (это называют гаструляцией). После этого можно считать, что прообраз человека готов. У него уже есть три оси тела и три слоя, из которых можно это тело собрать. Из верхнего слоя получится кожа и нервная система, из нижнего — кишечник и внутренние органы, а из среднего произойдут мышцы и скелет. Зародыш на этой стадии не может разделиться на двух полноценных близнецов, в лучшем случае получатся сиамские. Исходя из этого и некоторых других соображений, в 1984 году британская Комиссия по исследованию человеческого оплодотворения и эмбриологии предложила останавливать все эксперименты с человеческими зародышами на 14 день развития или на стадии первичной полоски (этому посвящен наш материал «14 дней спустя»). Это правило соблюдается и сейчас: где-то оно вошло в законодательство, где-то осталось на уровне рекомендации от научного сообщества. Правда, в 2021 году ученые признали, что однажды из этого правила придется сделать исключения — чтобы исследовать этапы развития человека, которые невозможно пронаблюдать на реальных эмбрионах. Но до сих пор никто на это не решился. Более того, до недавнего времени никто не мог вырастить даже двухнедельный эмбрион. На шаг ближе Это тем удивительнее, что сам по себе зародыш до гаструляции устроен предельно просто: всего два слоя клеток и никакой, казалось бы, сложной топологии. Причем на мышиных зародышах, у которых ранние стадии развития устроены примерно так же, эмбриологи продвинулись куда дальше — и дорастили их до стадии, на которой появляются предшественники нервной системы и бьется аналог сердца (у человека это происходит к концу третьей недели эмбриогенеза). С людьми оказалось сложнее — по двум причинам. Первая состоит в том, что ученые пытаются обойтись без половых клеток (поскольку, в отличие от сперматозоидов, яйцеклетки добывать довольно сложно, а выращивать искусственные мы пока не умеем). А значит, нужно научиться собирать эмбрионы из стволовых клеток — и проверить, что они развиваются, как настоящие. Такие эмбрионы уже несколько лет как существуют (о них читайте в материале «Здравствуй, гхола!»). Но растить их дольше недели сложно, потому что — и здесь возникает вторая причина неудач — зародыш должен имплантироваться в стенку матки. А искусственную матку до сих пор тоже никто не придумал. То есть нужно каким-то образом имитировать весь набор сигналов, которые эмбрион мог бы получать от матери, — механические, химические и клеточные — или научиться обходиться без них. Теперь сразу пять групп ученых показали, как это могло бы работать. Китайские ученые из группы Ли Тяньцина (Tianqing Li) из Куньминского университета науки и технологий взяли эмбриональные стволовые клетки (это культура клеток из эмбриона на стадии нескольких дней развития), разделили на две группы и обработали первую одними сигнальными веществами, чтобы клетки остались «наивными», а вторую — другими, чтобы клетки превратились в аналог трофобласта. Затем все клетки смешали, и они образовали трехмерные шарики. Ли и коллеги назвали их Е-ассемблоидами (где Е обозначает «эмбрионоподобные»). Сначала ассемблоиды дорастали всего до третьего дня в культуре. Но после того как эмбриологи подобрали условия и стали обрабатывать их по очереди разными сигнальными молекулами, им удалось продержаться уже восемь дней. Причем внутри шариков появились две ключевые полости: амниотическая и желточного мешка. А судя по экспрессии генов, в ассемблоидах образовалось множество типов клеток, необходимых для зародыша перед гаструляцией: не только эпибласт и гипобласт, но еще ткани внезародышевых оболочек и даже что-то похожее на будущие клетки первичной полоски. Правда, трофобласт, самый внешний слой, ассемблоиды так и не отрастили. Ли с коллегами считают, что это даже к лучшему: так ни у кого не возникнет вопросов к этичности эксперимента — сразу видно, что зародыш неполноценный. На всякий случай они остановили культивирование после восьмого дня. Хотя в обсуждении своих результатов задались вопросом: может ли такая структура перейти на следующую стадию развития, еще на шаг ближе к трехслойному человеку? Через ступеньку Строго говоря, ниоткуда не следует, что искусственные зародыши, которые развиваются в искусственных условиях, должны проходить все те же самые стадии, которые ученые привыкли наблюдать у обычных зародышей. Например: к концу первой недели эмбриону человека положено быть полым клеточным шариком со скоплением клеток на одном из сторон. Это стадия бластоцисты, именно в таком виде зародыши обычно приступают к имплантации. Но в эксперименте Ли и его коллег никаких бластоцист не было — в ассемблоидах сразу начали образовываться амнион и желточный мешок. То же самое произошло и в работе, которую опубликовали американские эмбриологи под руководством Берны Созен (Berna Sozen) из Йельского университета. Эта команда не стала собирать зародыш из нескольких частей. Они просто культивировали эмбриональные стволовые клетки в разных средах по очереди: сначала в той, что поддерживает спонтанную дифференцировку клеток, а потом в той, которую используют для работы с постимплантационными зародышами. В итоге сферические кучки стали похожи на то, как выглядит эмбрион на девятый день развития: две полости и двуслойная перемычка между ними. Эту конструкцию Созен с коллегами назвали экстра-эмбриоид (поскольку в нее входят не только собственно зародышевая часть, но и внезародышевые оболочки). Группа Созен продержала экстра-эмбриоиды в культуре всего шесть дней. После этого они разобрали их на отдельные клетки и выяснили, что, судя по набору экспрессирующихся генов, экстра-эмбриоиды ушли гораздо дальше. Например, внутри эпибласта обнаружился градиент экспрессии генов, связанных с передне-задней осью, — то есть появились признаки разметки, характерной уже для гаструляции. А в некоторых клетках нашлись даже маркеры гаструляции (например, гены клеточных контактов, которые позволяют клеткам ползти и выселяться в промежуток между слоями) и первичной полоски. Получается, что внешне экстра-эмбриоиды еще соответствуют ранним стадиям развития, но отдельные клетки в их составе уже готовы к гаструляции или даже ее прошли. Значит ли это, что и этот процесс, как и стадию бластоцисты, в принципе можно проскочить, раз нужные клетки и так появляются сами собой? В 2021 году такие предположения уже звучали: тогда группа эмбриологов заявила, что без стадии первичной полоски млекопитающие теоретически могут обойтись. То есть оси симметрии, разметку тела и третий клеточный слой в любом случае приобрести придется — но процесс их приобретения может начаться на уровне отдельных клеток, без образования той самой структуры, на которую опирается правило 14 дней. А если структуры нет и развитие идет в другом темпе, то как выяснить, прошел ли зародыш критическую стадию? Будем площе Чтобы называться зародышем человека, можно не только не иметь первичной полоски — можно вообще не быть сферой. По крайней мере, так получилось в эксперименте с искусственными эмбрионами, который провела группа Мо Эмбрахимхани (Mo R. Ebrahimkhani) из Питтсбурга. Эти исследователи, как и группа Ли, собрали эмбрион из двух частей: обычных стволовых клеткок (на этот раз индуцированных плюрипотентных, то есть аналогов эмбриональных, полученных из взрослых клеток с помощью репрограммирования) и трансгенных. Встроенный в них ген подталкивал их развитие в сторону внезародышевых тканей. И действительно, за пять дней жизни в культуре над двухслойным диском образовалась амниотическая полость. Но поскольку Эбрахимхани и его команда растили эмбрионы на чашечках, то они распластались по подложке и приняли форму выпуклых дисков. Их так и назвали — дискоиды (в оригинале iDiscoids, где i означает «индуцированные»). Дальше выяснилось, что клеточные слои внутри дискоидов неоднородны и в них заметен градиент экспрессии генов, похожий на зачаток передне-задней оси. А некоторые клетки, судя, опять же, по работе генов, приготовились превратиться в желточный мешок и предшественники кроветворных клеток. Свою статью Эмбрахимхани и коллеги заканчивают абзацем, посвященным этической проблематике эксперимента. Дискоид, заявляют они, это просто удобная модель — она легко воспроизводится и неприхотлива, поэтому на ней можно изучать ранние стадии развития с их сигнальными каскадами и возможными аномалиями. Но никаких шансов на человеческую жизнь у нее нет: ни закрытого желточного мешка, поскольку она распластана на подложке, ни тем более трофобласта. Даже если ее оторвать от культуральной чашки и пересадить в настоящую матку, она не сможет туда имплантироваться — а разве можно тогда говорить о полноценном развитии человека? Модель для сборки Проблему внезародышевых тканей оказалось решить гораздо сложнее, чем проблему сборки искусственных зародышей (с которой каждая исследовательская группа справилась независимо). Двухслойный диск так или иначе вырастает, а вот окружить его нужным количеством вспомогательных пузырей в отсутствие материнской поддержки оказалось практически невозможно. С этим столкнулась и четвертая команда — из лаборатории Магдалены Зерницки-Гетц (Magdalena Zernicka-Goetz), кембриджского эмбриолога, которая одной из первых начала выращивать искусственные эмбрионы in vitro и тем самым угрожать существованию правила 14 дней. Кембриджские исследователи собрали свои зародыши из трех групп клеток: обычных стволовых (им предстояло играть роль эпибласта) и двух трансгенных (они под действием встроенного гена превращались в гипобласт и трофобласт). Получившиеся клеточные шарики перескочили стадию бластоцисты и сразу двинулись дальше, к стадии 8-9 дня развития, образовав амниотическую полость. Как и в предыдущих моделях, в этих эмбриоидах нашлись зародышевые и внезародышевые клетки и не вырос полноценный трофобласт. Зато внутри шариков ученые заметили еще одну важную группу клеток — предшественники половых клеток. Обычно в зародышах они возникают ближе к третьей неделе развития. То есть в тот самый момент, когда эмбрион с точки зрения научного сообщества становится человеком (в такой степени, чтобы эксперименты с ним требовали отдельного разрешения), в нем появляется зачаток следующего поколения людей. Таким образом, в эмбриоидах Зерницки-Гетц и ее коллег возник своеобразный анахронизм: зародышевые ткани развиваются по графику (а то и с опережением), а внезародышевые нет. Кембриджские эмбриологи делают акцент на том, что их эмбриоиды — это модульная конструкция. Зародыши собраны из трех разных типов клеток, причем трансгенных, а это значит, что дальше в эксперименте можно брать линии клеток с разными мутациями или другими трансгенами и проверять, как они влияют на развитие всего эмбриоида. Очень полезная модель — но всего лишь модель, поскольку сама по себе она не способна ни имплантироваться, ни двигаться к следующим стадиям. Ей не хватает внезародышевых частей — а без них собственно человеческие части ни на что не способны. Что такое человек У пятого искусственного эмбриона нет и этой проблемы. Его собрала группа Якоба Ханны (Jacob H. Hanna) из института Вейцмана в Реховоте — та самая группа, которая впервые дорастила зародыш мыши in vitro до стадии образования конечностей. Они начали почти так же, как их кембриджские коллеги, с трех групп клеток-трансгенов. Потом обнаружили, что если хорошо подобрать условия культивирования, то даже обычные, не трансгенные клетки превращаются в эпибласт, гипобласт и трофобласт по отдельности. Из них слепили шарики и оставили расти в трехмерной культуре на качающейся платформе. То, что выросло, назвали SEM — моделью эмбриона из стволовых клеток. SEM-ы тоже проигнорировали стадию бластоцисты и перешли сразу на 9-10 день развития. А потом двинулись дальше. У них появилось все: амнион и желточный мешок, наметки передне-задней оси, предшественники половых клеток, полость хориона, рудиментарный трофобласт и даже зачаточный пуповинный канатик. Ханна и его коллеги сочли, что это соответствует 13-14 дню развития человека, — и свой эксперимент остановили. Но, вероятно, ненадолго. Сами ученые, как и авторы остальных работ, настаивают на том, что просто совершенствуют модель — причем такую, которая подойдет для исследований, «даже если не вполне похожа на настоящий зародыш человека». Но сами при этом замечают, что их SEM-ы структурно очень похожи на то, что можно найти в стенке матки во время беременности. После того, как в сети появились эти препринты об искусственных зародышах, группа кембриджских биоэтиков заявила о том, что пришло время разработать новые правила — и обещала к осени представить проект. Предыдущий набор рекомендаций относится только к настоящим человеческим эмбрионам. Новый регламент должен как-то описывать этические ограничения в отношении лабораторных конструкций, которые сами создатели не решаются назвать человеком, а только приближенной к нему моделью. Правда, чем дальше, тем сложнее сказать, действительно ли мы имеем дело с моделью или уже с реальным человеческим эмбрионом, собранным из отдельных клеток in vitro. Критерии, на которые опирались биоэтики сорок лет назад, постепенно теряют свою актуальность. Нет смысла считать дни, которые зародыш провел в лаборатории, — потому что он начинает не с нуля и перескакивает стадии, развиваясь в собственном темпе. Нельзя проверить, приобрел ли зародыш все нужные свойства, — потому что никто не решится пересадить его в настоящую матку (здесь никаких послаблений в рекомендациях и законах ждать не приходится). Можно, конечно, дожидаться появления первичной полоски — но нет гарантии, что следующий искусственный зародыш не сможет обойтись без нее. Остается только вычислять стадию развития по экспрессии генов и набору клеточных типов — но есть шанс, что и здесь никогда не будет полного совпадения. И придется как-то устанавливать отдельную, молекулярную грань — за которой заканчивается модель человека и начинается настоящий человек. Повод применить новые правила может появиться уже скоро. В последнем предложении своей статьи Ханна и коллеги заявляют, что выяснить, может ли SEM-человек развиваться дальше, «критически важно с точки зрения эксперимента». И нет оснований думать, что они не попробуют это выяснить.