Ученые выяснили, что развитие щупалец актиний тесно связано с их питанием: если животным нечего есть, они перестают отращивать новые щупальца. У всех актиний щупальца вырастают в определенном порядке, и для этого процесса необходимы два внутриклеточных сигнальных пути: TOR и FGFRB. Статья опубликована в журнале Nature Communications.
Стрекающие, или книдарии — это животные, однако они могут выращивать новые органы и оси тела в течение всей жизни, как растения. Этот процесс схож с регенерацией, но его задача — не компенсировать повреждения, а адаптировать организм к меняющимся условиям среды. Поэтому зоологов интересуют органогенез стрекающих, механизмы его настройки и запускающие факторы.
Ученые из Германии и США под руководством Айсама Икми (Aissam Ikmi) из Европейской молекулярно-биологической лаборатории исследовали органогенез книдарий на примере роста щупалец актинии нематостеллы (Nematostella vectensis). Для этого исследователи проследили за развитием щупалец у более 1000 полипов.
Первые четыре щупальца появляются еще у личинки актинии, симметрично в четырех из восьми сегментов тела. Затем последовательно развиваются новые щупальца: обычно их 16, однако в эксперименте у актиний, которые не выметывали гаметы, их число превышало 18. Если животных не кормили, новые щупальца переставали расти: таким образом ученым удалось фиксировать развитие щупалец на разных стадиях и определить, в каком порядке они формируются.
Появление шести пар щупалец (не считая четырех первичных) разделили на три фазы. Щупальца всегда росли парами — либо одновременно, либо поочередно (в этом случае у актиний временно было нечетное количество щупалец). В первой фазе щупальца вырастали в четырех свободных сегментах, а во второй фазе еще две пары щупалец нарушали радиальную симметрию полипа.
Билатеральная симметрия (когда существует только одна ось симметрии и две равные половины) сохранялась и в третьей фазе; пары щупалец появлялись не в противоположных сегментах, как в первых двух фазах, а по два в одном — в итоге в двух из восьми сегментах оказывалось по три щупальца, еще в двух — по одному.
Исследователей заинтересовала связь между питанием актиний и ростом щупалец, и они изучили ее подробнее на примере первой пары щупалец (не считая первичных). Чем больше актиния ела, тем быстрее формировались ее первые взрослые щупальца: сначала животные вырастали вдвое, и только после этого закладывались зачатки щупалец. Если ученые переставали кормить актиний на этапе формирования зачатков, щупальца продолжали расти, хотя в остальном теле клетки переставали делиться. Если еды не было, а зачатки еще не сформировались, то щупальца вообще не росли.
Затем ученые проследили молекулярные сигналы, которые запускают рост щупалец. До того, как зачатки щупальцев набухали, в соответствующих сегментах тела группы клеток кольцевой мускулатуры начинали экспрессировать ген рецепторов фактора роста фибробластов (Fgfrb) — участников сигнального пути, необходимого для пролиферации и дифференцировки.
Fgfrb-экспрессирующие клетки обозначали точки роста будущих щупалец. Затем, если актинию кормили, в тех же клетках активировались сигнальные комплексы TOR. Вслед за этим расширялась экспрессия Fgfrb, формировался зачаток, а затем и целое щупальце.
Оба сигнальных пути были необходимы для развития щупалец. Если TOR блокировали рапамицином, новые щупальца не вырастали. То же происходило, если актиний не кормили: TOR не был активен, и экспрессия Fgfrb локализовалась в небольшой группе клеток. При выключении FGFRB-пути подавлялась активация TOR в намеченной точке роста щупалец. Мутанты, у которых ген Fgfrb вообще не работал, могли вырастать до нормальных размеров, хотя и медленнее, чем актинии дикого типа, но щупальца у них так и не вырастали, а четыре первичных оставались в зачаточном состоянии.
Исходя из этих результатов, ученые предположили следующий молекулярный механизм роста щупалец: FGFRB необходим для разметки будущих щупалец и формирования зачатков, но для роста щупалец должен активироваться путь TOR, чего не происходит, если актинии не питаются.
С помощью щупалец нематостеллы питаются, для этого на них есть стрекательные клетки, которые дали название всему типу стрекающих, и чувствительные волосковые клетки. Последние похожи на рецепторные клетки слухового и вестибулярного аппарата позвоночных. Ученые воспользовались этим сходством и с помощью ремонтных белков актиний смогли «починить» поврежденные волосковые клетки мышей. Возможно, в будущем белками нематостелл можно будет лечить тугоухость.
Алиса Бахарева
Это напоминает игровое поведение
Исследователи из Германии поместили дрозофил в арену с вращающимся диском и обнаружили, что небольшая часть мух проводит на этом диске какое-то время и, возможно, получает удовольствие от вращения. Такое поведение очень похоже на игровое, однако его нейронные корреляты еще предстоит изучить. Препринт опубликован на bioRxiv.org. Люди и нечеловеческие животные любят играть. Причем не только млекопитающие: игровое поведение замечали у птиц, гекконов и даже рыб. Игровое поведение отличается от любого другого: оно должно не иметь отношения к выживанию, быть произвольным и преднамеренным, повторяющимся, но не стереотипным, и происходить не в условиях стресса. Не так давно исследователи обнаружили, что играют даже беспозвоночные — шмели без всякой практичной цели катали деревянные шарики, а у бумажных ос и пауков замечали социальную игру. Однако игра беспозвоночных, которую ученым удалось зафиксировать, была ограничена взаимодействием с сородичами или предметами. Теперь Тельман Трифон (Tillman Triphan) и Вольф Хюттерот (Wolf Huetteroth) из Лейпцигского университета обнаружили, что плодовые мушки дрозофилы (Drosophila melanogaster) не прочь покрутиться на вращающемся диске. И это уже другой тип игры, если такое поведение все-таки можно назвать игрой. Самцов дрозофил (112 штук) поместили в экспериментальную арену, где у них был свободный доступ к пище и постоянно вращающийся диск на уровне пола. Мухи могли запрыгивать на этот диск или, наоборот, избегать его, или же игнорировать. Контрольных мух (194 штуки) в свою очередь поместили в такую же арену, где диск не вращался. Несколько дней за мухами наблюдали, не вмешиваясь. Поскольку дрозофилы могли сами решать, залезать на диск или нет, это отличалось от вынужденного пассивного движения, которое вызывает у мух стресс. Большинство дрозофил (60 штук) проигнорировало вращающийся диск — они не избегали его, но и не выражали большого интереса. Еще 18 дрозофил избегали вращающегося диска и большую часть времени провели за едой. Однако общая продолжительность времени, которое мухи провели на диске, было выше, когда диск вращался. Небольшое подмножество мух (10 штук) более 5 процентов времени сидело на диске и чаще возвращались на него, если покидали. Тогда исследователи поместили на арену два диска, которые вращались попеременно по 5 минут. В итоге 33 мухи, которые проводили больше времени на диске в прошлом испытании, здесь перемещались с диска на диск — чтобы покрутиться. То есть они намеренно и неоднократно садились на крутящийся диск, и, таким образом, стало ясно, что вращение им нравится. Возможно, такое вращение каким-то образом улучшает проприорецепцию дрозофил (то есть чувство собственного тела) и сенсомоторный контроль. Однако требуются дальнейшие исследования, чтобы выяснить, какая нейронная активность за этим стоит. Недавно ученые Великобритании обнаружили, что некоторые обезьяны кружатся на веревках до головокружения — и, видимо, получают от этого удовольствие.