Американские нейробиологи обнаружили у лабораторных мышей группу клеток-вкусовых рецепторов, которые реагируют на несколько разных вкусов, а не на какой-то один (как большинство рецепторов такого рода), сообщается в PLoS Genetics. Они, как и более специализированные рецепторы, необходимы для полноценного восприятия конкретных вкусов — соленого, сладкого, горького и умами (вкуса глутамата).
Чтобы определить, съедобен ли какой-то предмет или нет, нужно попробовать его на вкус. Если он горький, то, скорее всего, это не надо есть, если кислый — вероятно, тоже (продукт мог испортиться), а если сладкий или со вкусом умами — высок шанс, что перед вами нечто высококалорийное, что было бы особенно полезно съесть. В месте непосредственного контакта с потенциальной пищей — ротовой полости — расположены клетки с белками-рецепторами к кислому, соленому, горькому, сладкому и умами. Большинство таких клеток реагирует только на какой-то один вкус и лишь некоторые — на два (к примеру, вкусы кислого и воды, хотя может быть, что они регистрируют не вкус жидкости, а какие-то другие ее параметры).
Однако несколько лет назад нейробиологи из Университета штата Нью-Йорк в Буффало во главе с Кэтрин Медлер (Kathryn Medler) нашли среди вкусовых рецепторов группу клеток, которые, видимо, активируются при стимуляции не только соленым и кислым, но и горьким. Вообще, существует три типа вкусовых рецепторов. Клетки первого типа, судя по всему, скорее вспомогательные и по свойствам ближе к клеткам нейроглии, чем к нейронам.
Вкусовые рецепторы второго типа активируются при наличии одного из трех вкусов — горького, сладкого или умами. Также есть еще клетки, реагирующие на кислое и соленое, это вкусовые рецепторы третьего типа. Считается, что во вкусовой системе клетки одного типа не активируются в ответ на то, что возбуждает рецепторы других типов. Такое разделение возможностей обусловлено разницей в химической природе веществ, обладающих тем или иным вкусом. Однако предварительные данные Медлер и коллег указывают на то, что из этого правила существуют исключения, и они относятся к клеткам третьего типа.
Активность вкусовых рецепторов третьего типа можно определить по изменению концентрации ионов кальция внутри них. Поэтому чтобы проверить, есть ли среди этих нейронов рецепторы с «расширенной» чувствительностью, исследователи ввели в них флуоресцентные красители, у которых интенсивность «свечения» зависит от содержания кальция.
Клетки изучали у мышей, которым инактивировали ген, кодирующий PLCβ3 (фосфолипазу C-бета) — фермент, критически важный для передачи сигнала у вкусовых рецепторов третьего типа. Мышам другой группы недоставало активного гена, отвечающего за производство IP3R3 — рецептора к инозитол-1,4,5-трифосфату. Этот рецептор в норме обеспечивает работу клеткам второго типа.
Влияние активности различных рецепторов на восприятие вкусов мышами определяли в поведенческих экспериментах. Животным давали воду, в которую подмешивали либо очень горькое вещество денатониум бензоат, либо подсластитель ацесульфам калия, либо соль (хлорид натрия), либо отвечающий за вкус умами глутамат натрия. Ученые смотрели, какую жидкость животные, которых давно не поили, будут лакать охотнее. Кроме поведенческих экспериментов проводили и электрофизиологические, изолируя вкусовые рецепторы от остальных клеток организма.
Оказалось, что животные теряют способность воспринимать горькое, сладкое и умами и в том случае, если выключить IP3R3 и нарушить работу рецепторов второго типа, которые на этих вкусах специализируются, и в том случае, если инактивировать PLCβ3 и таким образом вывести из строя вкусовые рецепторы третьего типа — хотя они, как считалось раньше, не реагируют на умами, сладкое и горькое. Результаты электрофизиологических опытов на изолированных клетках подтвердили данные поведенческих экспериментов.
Получается, что по крайней мере некоторые клетки третьего типа на самом деле эти вкусы воспринимают, а значит, есть вкусовые рецепторы, которые реагируют сразу на несколько вкусов — даже больше двух. Более того, без этих неспециализированных клеток работа специализированных вкусовых рецепторов второго типа неэффективна. Пока непонятно, есть ли какие-то особенности обработки сигналов от неспецифических вкусовых рецепторов в мозге, но уже ясно, что нашим представлениям о восприятии вкусов недоставало нескольких важных элементов.
Как и другие сенсорные системы, структуры, отвечающие за восприятие вкусов, можно «обмануть», если искусственно стимулировать их электрическим током, нейромедиаторами или светом (в последнем случае в клетки нужно предварительно встроить особые светочувствительные белки). Так, если усиливать или подавлять активность определенных нейронов коры больших полушарий, получающих информацию от вкусовых рецепторов, можно добиться того, что одна и та же вода одним мышам будет казаться сладкой, а другим — горькой.
Светлана Ястребова
Исследование провели на личинках дрозофил
Японские исследователи в экспериментах с дрозофилами установили механизм влияния на нейропластичность фермента убиквитинлигазы, функции которого нарушены при синдроме Ангельмана. Как выяснилось, этот фермент в пресинаптических окончаниях аксонов отвечает за деградацию рецепторов к костному морфогенетическому белку, за счет чего устраняются ненужные синапсы в процессе развития нервной ткани. Отчет о работе опубликован в журнале Science. Синдром Ангельмана представляет собой нарушение развития, которое проявляется умственной отсталостью, двигательными нарушениями, эпилепсией, отсутствием речи и характерной внешностью. Его причиной служат врожденные дефекты фермента убиквитинлигазы Е3А (Ube3a), который присоединяет к белкам убиквитин, влияющий на их судьбу в клетке, в том числе деградацию. При синдроме Ангельмана сниженная активность Ube3a нарушает синаптическую пластичность в процессе нейроразвития, в частности элиминацию ненужных синапсов. Повышенная активность этого фермента, напротив, приводит к неустойчивости сформировавшихся синапсов и, как следствие, к расстройствам аутического спектра. Исследования постсинаптических функций Ube3a показали, что он играет роль в нейропластичности, в частности формировании дендритных шипиков. При этом, по данным иммунохимических и электронно-микроскопических исследований, в коре мозга мыши и человека этот фермент экспрессируется преимущественно пресинаптически. Учитывая высокую эволюционную консервативность Ube3a, сотрудники Токийского университета под руководством Кадзуо Эмото (Kazuo Emoto) использовали для изучения его пресинаптических функций сенсорные нейроны IV класса по ветвлению дендритов (C4da) личинок плодовой мухи дрозофилы. Число дендритов этих нейронов резко сокращается (происходит их прунинг) в первые 24 часа после образования куколки, а на последних стадиях ее развития дендриты разветвляются вновь уже по взрослому типу. Используя флуоресцентные метки различных биомаркеров нейронов, исследователи показали, что в ходе этого процесса ремоделированию подвергаются не только дендриты, но и пресинаптические окончания аксонов. Попеременно отключая разные компоненты участвующих в этих процессах молекулярных комплексов, ученые убедились, что для элиминации синапсов под действием сигнального пути гормонов линьки экдизонов необходима только Ube3a, но не куллин-1 E3-лигаза, участвующая в прунинге дендритов. Дальнейшие эксперименты с применением флуоресцентных меток и РНК-интерференции показали, что Ube3a активно транспортируется из тела нейрона в аксон двигательным белком кинезином со средней скоростью 483,8 нанометра в секунду. Создав мутантов с дефектами в различных участках Ube3a, авторы работы выяснили, что связанные с синдромом Ангельмана мутации D313V, V216G и I213T в среднем домене фермента, содержащем тандемные полярные остатки (TPRs), препятствуют его связи с кинезином и транспорту из тела нейрона в аксон. Как следствие, нарушается элиминация ненужных синапсов. Изменения в N-концевом цинк-связывающем домене AZUL и C-концевом HECT влияли на эти процессы в значительно меньшей степени. Ube3a принимает участие в убиквитинировании многих клеточных белков. Чтобы выяснить, какой из них опосредует элиминацию синапсов, авторы работы вызывали в нейронах избыточную экспрессию разных белков-мишеней Ube3a с целью насытить этот фермент и таким образом заблокировать его действие. Оказалось, что выраженные дефекты элиминации синапсов возникают при избыточной экспрессии тиквеина (Tkv) — пресинаптического рецептора к костному морфогенетическому белку (ВМР); прунинг дендритов при этом не затрагивается. Исследование нормальной экспрессии Tkv с помощью флуоресцентных меток показало, что ее уровень значительно снижается через восемь часов после начала формирования куколки. У мутантов, лишенных Ube3a, этого не происходило. Выключение гена tkv или другого компонента сигнального пути BMP — mad — восстанавливало элиминацию синапсов у таких мутантов, то есть за нее отвечает именно этот сигнальный путь. Это подтвердили, восстановив элиминацию синапсов у мутантов без Ube3a антагонистом BMP LDN193189, а также экспрессией белков Glued-DN или Dad, которые подавляют сигнальную активность Mad. Искусственное повышение пресинаптической экспрессии Ube3a в нейронах C4da вызывало массированную преждевременную элиминацию сформировавшихся синапсов и общее уменьшение синаптической передачи у личинок третьего возраста. Это происходило из-за чрезмерного подавления сигнального пути BMP. Таким образом, дефекты убиквитинлигазы Ube3a, лежащие в основе синдрома Ангельмана, приводят к избыточной активности сигнального пути BMP, вследствие чего не происходит устранение ненужных синапсов в процессе развития нервной системы. Этот сигнальный путь может послужить мишенью для разработки новых методов лечения этого синдрома, а возможно и расстройств аутического спектра, считают авторы работы. В 2020 году американские исследователи сообщили, что им удалось предотвратить развитие синдрома Ангельмана у мышей с мутацией материнской копии гена UBE3A. Для этого они с помощью системы CRISPR/Cas9 инактивировали длинную некодирующую РНК UBE3A-ATS, которая подавляет экспрессию отцовской копии UBE3A.