Физики разработали и протестировали лазер на гетероструктуре германий-олова с электрической накачкой. Ширина самого узкого пика генерации составила 0,13 нанометра, а порог генерации — 598 ампер на квадратный сантиметр при температуре 10 кельвин. Сплав германий-олово хорошо совместим с кремниевой технологией и поэтому такой полупроводниковый лазер может стать отличным интегральным источником света. Статья опубликована в журнале Optica.
Любой лазер состоит из трех основных частей: накачки, активной среды и резонатора. Накачка служит источником энергии — она может быть электрической, химической, тепловой или световой. Эта энергия необходима атомам активной среды для того, чтобы перейти в возбужденное состояние и после релаксации испустить фотоны. Резонатор в простейшем случае представляет собой два зеркала и позволяет фотонам много раз пролететь через активную среду и заставить другие атомы тоже испустить фотоны. Одно из зеркал резонатора делается частично прозрачным, чтобы излучение лазера могло покинуть резонатор.
Если активная среда лазера — полупроводник, то такой источник излучения можно накачивать электрическим током. При подаче напряжения электроны и дырки полупроводника приходят в движение. Они встречаются в активной зоне и могут объединиться (рекомбинировать) с испусканием фотона. Чем больше электронов и дырок находится в активной зоне, тем вероятнее они будут рекомбинировать и тем чаще будут излучаться фотоны. Чтобы накапливать электроны и дырки, активная зона должна представлять собой подобие ямы — частицы сваливаются в нее, а выбраться обратно не могут. Создание структуры с такой активной зоной может в разы увеличить эффективность полупроводниковых лазеров.
В 2016 году группа ученых под руководством профессора Шуй-Цин Юй (Shui-Qing Yu) из университета Арканзаса продемонстрировала миниатюрный полупроводниковый лазер с оптической накачкой. В качестве активной зоны физики использовали гетероструктуру из германия и сплава германия с оловом. В новой работе физики решили упростить схему и увеличить эффективность генерации излучения. Для этого они использовали электрическую накачку и модифицировали активную среду.
Активная среда разработанного лазера — это гетероструктура с двумя гетеропереходами. Она состоит из пяти эпитаксиальных слоев, которые один за другим выращиваются на кремниевой подложке: самый нижний слой — слой германия с избытком электронов (n-типа), за ним идет слой сплава германий-олово тоже n-типа с возрастающей снизу вверх концентрацией олова, далее самый важный внутренний активный слой германий-олово и сверху еще два слоя соединения германий-олова с кремнием p-типа (с избытком дырок). Для создания омического контакта концентрация дырок в пятом слое больше, чем в четвертом. Рентгеноструктурный анализ и электронная просвечивающая микроскопия подтвердили, что выращенные гетероструктуры имеют именно такую конфигурацию.
В качестве резонатора физики использовали волновод гребенчатого типа, который изготовили методом жидкостного травления. В работе исследовались волноводы разных длин — 0,3, 0,5, 0,8 и 1,7 нанометров. После добавления контактных площадок, структуру помещали в криостат для дальнейших измерений при низких температурах.
Конфигурация энергетических зон разработанной гетероструктуры позволила уменьшить вероятность покидания дыркой активной области, что привело к концентрации заряженных частиц внутри этой области. За создание такого профиля энергетических зон ответственны два верхних слоя гетероструктуры, которые имеют избыточную концентрацию дырок. Скапливание зарядов в активной области привело к увеличению эффективности генерации.
Помимо этого, прием с легированием верхнего слоя структуры позволяет уменьшить пороговую плотность тока (минимальное значение, необходимое для генерации лазерного излучения) и получить мощность выше при меньшей энергии накачки. Физики получили зависимости мощности излучения лазера от температуры и длины волновода. Они показали, что увеличение температуры приводит к снижению пиковой мощности при той же плотности тока. В то же время, чем длиннее волновод, тем больше пиковая мощность при одинаковых плотностях тока и меньше порог генерации лазера. Скорее всего это связано с тем, что для длинных волноводов доля потерь на зеркалах меньше, чем для коротких.
Измерение спектра эмиссии структуры в грубом разрешении показало, что ширина спектра генерации лазера при десяти кельвинах составляет примерно 20 нанометров на длине волны 2300 нанометров. При детальном изучении спектра выяснилось, что генерация происходит на разных длинах волн и ширина самого интенсивного пика составила всего 0,13 нанометра.
Оказалось, что такой лазер может генерировать излучение с мощностью 2,7 милливатта при температуре 10 кельвин, квантовая эффективность при этом составляет всего 0,3 процента. В будущих исследованиях авторы планируют разными методами улучшать параметры лазера. Например, за счет увеличения содержания олова в сплаве можно добиться увеличения эффективности накачки, а снижение уровней легирования позволит минимизировать поглощение свободных носителей.
В настоящее время интегральная фотоника и ее приложения развиваются очень активно. Интерес к ней связан с возможностью создания компактных и дешевых устройств. Так, американские физики смогли собрать ускоритель частиц на небольшом чипе. А ученые из Массачусетского технологического института изготовили самый крупный на сегодняшний день квантовый вычислитель на интегральной схеме.
Оксана Борзенкова
Какую физику несут на себе маркерные доски из игры Control
Мнение редакции может не совпадать с мнением автора
Есть такая вещь — профдеформация. В моем случае она приняла довольно необычную форму. В марте у меня вышел материал, в котором я разобрал содержание маркерных досок в интерьерах института Black Mesa из ремейка первой части Half-Life. Досок в игре больше тридцати, на их исследование у меня ушло довольно много времени и сил. С тех пор я замечаю доски везде — и в мире реальном, и в мире виртуальном — и начинаю их внимательно изучать. Например, когда у меня случилась командировка в новосибирский Институт ядерной физики имени Будкера, я пристально рассматривал местные доски, вместо того чтобы слушать о том, как работает тамошний электрон-позитронный коллайдер. А вернувшись домой, я поставил Control. Этот шутер от третьего лица, разработанный финской студией Remedy Entertainment, рассказывает историю простой (но на самом деле не совсем) девушки Джесси, которая внезапно становится директором Федерального Бюро Контроля — секретной правительственной организации, которая занимается поиском, изучением и контролем за сверхъестественными предметами и явлениями. Новая должность открывает для нее связи с неким потусторонним управляющим органом под названием Совет, о котором нам мало что известно. Его символизирует черная перевернутая пирамида, с которой Джесси регулярно будет взаимодействовать. Игра вдохновлена коллективным творчеством людей из проекта SCP Foundation, который возник в темных глубинах имиджбордов лет 15 назад (а то и больше) и продолжает пополняться новыми записями по сей день. В «Контроле» значительную часть персонала Бюро составляют ученые. А где ученые, там должны быть лаборатории, а внутри, естественно, должны быть доски, на которых что-то написано. Лаборатории и доски по мере прохождения игры ты действительно встречаешь здесь и там. Правда, есть несколько странностей. Львиная доля непустых досок посвящена физике или математике. Причем физика там встречается весьма современная — это мы с вами еще увидим. Вместе с тем, в локациях почти невозможно найти хоть какой-нибудь физический прибор, повсюду только камеры да антенны. Более того, игровая вселенная дает технологиям в Бюро ограничение сверху: приборы и гаджеты не должны быть совершеннее, чем оборудование, бывшее в ходу в 1970-е годы. Это якобы связано с особенностями Старейшего дома — здания с паранормальными свойствами, в котором расположено Бюро. Странным также кажется отсутствие биологических досок, хотя этому аспекту происходящего уделяется в игре довольно много времени. Все маркерные доски в Control можно разбить на три группы: пустые доски, доски с ненаучным — сюжетным — содержанием, доски с физикой/математикой. Вторая категория интересна тем, что каждая такая доска есть только в одном экземпляре и все они содержательно связаны с местами, в которых установлены. Их чтение позволяет глубже проникнуть в сюжет и законы игрового мира. Научные же доски, напротив, повторяются из локации в локацию, а также не имеют отношения к тому, в каком месте стоят. По сути, как и пустые доски, это просто элементы интерьера. Их всего десять. Как я искал доски Поначалу я фиксировал местоположение в игре каждой уникальной доски с научным содержанием, но в конечном итоге просто обратился к ресурсам игры, распаковав их с помощью вот этой программы. Именно эти текстуры, конвертированные в графический формат, представлены ниже. Помимо этого, я пытался взять комментарий у людей, имевших отношение к созданию игры. Remedy мне не ответили, зато откликнулся один из сотрудников российской студии Blacksteinn, который участвовал в разработке в статусе Texture Artist. Увы, именно досками он не занимался и помочь мне не смог. В конечном итоге цепочка оборвалась на украинской студии Room 8, которые также работали над игрой. На момент написания этого текста ответ от них я так и не получил. Поэтому высококачественных исходников досок, в отличие от прошлого раза, добыть не удалось. Но качество изображений хотелось все же улучшить. Поскольку я профан в этом деле, я напрямую спросил у ChatGPT, на каком сайте можно бесплатно сделать апскейл изображений низкого разрешения с рукописным текстом. Бот посоветовал мне ресурс, который использует программный пакет с замечательным названием waifu2x. «Он был изначально разработан для увеличения разрешения аниме-изображений, но также хорошо работает с рукописными текстами», — написал мне бот. Не соврал. Чтобы увидеть улучшенное изображение, нажмите на лупу во время просмотра картинок. Доски Эта доска состоит из двух частей. В верхней части приведены параметры магнитооптического и зеемановского замедлителей, используемых в ловушках для атомов рубидия. В этом легко убедиться, если открыть диссертацию французского физика Лукаса Бегина, откуда они были переписаны от руки (см страницу 45). Лукасу я написал письмо, но ответа так и не получил. Отличаются лишь подписи к параметрам: «MOT parameters» и «Zeeman parameters» заменены на «control parameters» и «triangle parameters». Эти термины не имеют отношения к атомным ловушкам, их скорее можно встретить в работах по численным вычислениям. Впрочем, здесь едва ли имеет смысл копать так глубоко: слово control — одно из самых главных в словаре игры, а triangle может быть отсылкой к черной перевернутой пирамиде. В нижней части изображен рисунок к хрестоматийной задаче механики о скольжении бруска по наклонной плоскости. Его можно встретить практически в любом пособии или учебнике. Самая первая схема иллюстрирует перемещение материальной точки в декартовой системе координат из точки e в точку a по прямой; приведены формулы для векторов скорости и ускорения в дифференциальном виде. Это все простая механика, а точнее — кинематика. Все остальное не имеет очевидного или однозначного отношения к физике. Кое-что, однако, можно сказать про список имен. Это сотрудники Remedy, которые делали дизайн уровней. Я списался с, как мне показалось, руководителем этой команды, Масао Огино, но он ответил, что текстурами занимались другие люди — кто именно, он не вспомнил. Для этой доски авторы перерисовали картинку из вот этой статьи в Communications Physics. Эта статья также посвящена охлаждению атомов рубидия, однако она напрямую не связана с диссертацией выше, а их авторы не работали вместе. В этом исследовании физики изучали наведенный светом магнетизм в атомах, запертых в узлах оптической решетки. Авторы статьи ответили, что не знали об использовании их работы в игре, но в целом были обрадованы этим фактом — особенно те, что помоложе, — а руководитель группы даже похвастался моей находкой у себя в твиттере. Слева приведена школьная таблица производных от обратных тригонометрических функций. В англоязычных источниках их часто обозначают через минус первую степень. Система выражений справа имеет более специфичную природу. Это формула для функции оптических потерь звездной короны в зависимости от ее температуры, взятая, по-видимому, отсюда. Зависимость выглядит довольно причудливой; на соответствующий график можно посмотреть здесь. Картинка снизу выглядит как иллюстрация к простой кинематической задаче. Ее источник мне найти не удалось. Еще один образец научной дизайн-эклектики. Слева мы видим рисунок, который встречается в уже знакомой нам диссертации Лукаса Бегина, — это схема фиксации атомов в луче света. Справа — выражения и график, описывающие пульсацию в выпрямителе напряжения. Целиком этот кусок можно найти на сайте с вопросами для инженеров-электриков, а также в отрывке какого-то учебника (какого конкретно — мне выяснить не удалось). Снизу — тоже электрические цепи, но уже более простого уровня. Удивительно, где я нашел источник этого изображения — это кадр из YouTube-видео (на 65 секунде), на котором разбирается школьная задача о последовательном и параллельном соединении конденсаторов. Я не сразу нашел источник этого изображения, но все-таки выяснил, что изначально оно было создано разработчиками или дизайнерами Ziteboard — кроссплатформенной интернет-доски. С помощью математических выкладок они демонстрировали работоспособность их детища. Человек с ником Skalkaz выложил некоторые из них в Викимедию, откуда, по видимому, их взяли работавшие над Control люди (ниже будет еще одна такая доска). Этим человеком оказался один из членов команды Ziteboard (вероятно, даже руководитель, кстати, физик по образованию). Он очень удивился использованию своих артов и был польщен. Skalkaz обещал, что найдет время, чтобы пройти игру и найти в ней свои доски. Формулы сверху слева описывают окислительно-восстановительный процесс, в котором медь растворяется, а серебро, наоборот, выпадает в осадок. Если захочется подробнее почитать об этом, источник вот в этом онлайн-справочнике. Ниже — школьные формулы для физики волн с чьей-то презентации, есть тут. Справа виднеются формулы для верхней (UCL) и нижней (LCL) контрольных границ. Эти величины вводят в теории управления различными процессами. Там они нужны, чтобы контролировать параметры этих самых процессов (смотрите, опять control). В таком виде формулы встречаются во множестве мест, например здесь. Последний рисунок — иллюстрация к дифракции на щели. Его можно найти в учебном пособии Бостонского университета. Слева приведена таблица некоторых ядерных превращений и количество энергии, которая при этом образуется. Целиком таблицу можно увидеть в справочнике университета штата Джорджия (нужен VPN). В правой части иллюстрация к явлению конструктивной интерференции волн. В самом начале нас встречает выражение для гамильтониана множества взаимодействующих частиц в координатном представлении, записанное в общей форме. В таком виде его можно встретить во множестве учебников по квантовой механике, например, здесь. Ниже мы видим стационарное уравнение Шрёдингера для массивной частицы в некотором потенциале. Ошибка в фамилии великого физика (Shrodinger вместо Schrödinger) существенно сужает поиск источника: формула взята либо отсюда, либо из этого видео. Наконец, справа размещено очень громоздкое дифференциальное уравнение второго порядка. Его источник найти не удалось, но, судя по обозначениям, это часть какой-то задачи из релятивистской квантовой механики электрона — похожие обозначения можно найти тут. Это вторая доска, позаимствованная у Ziteboard. Ее можно найти на Викимедии, погуглив вместе слова «typical», «mathematical» и «whiteboard». Подозреваю, что именно таким путем эта и шестая доски попали в игру. Комментируя эту гипотезу, Skalkaz отметил, что много лет назад он выбирал такое название для файлов из SEO-соображений и теперь рад, что не прогадал. Помимо обычной перестановки формул и графиков авторы текстуры сделали еще одно небольшое изменение. Обратите внимание на левый верхний угол: в отрывке, посвященному формированию дождя, оригинальная гора была заменена на прямоугольную конструкцию с синей точкой внизу. Осмелюсь предположить, что конструкция — это тот самый Старейший дом, прототипом которого стало здание по адресу Нью-Йорк, Томас-Стрит, 33. В этом случае синяя точка может быть Розовым Фламинго — предметом с паранормальными свойствами, который способен вызывать дождь. Что-то еще? Да. Кроме маркерных досок в игре можно найти классические меловые. Все три — уникальные и встречаются только раз. Одна из них имеет сюжетное наполнение, другая содержит шифр, разгадав который, первые три игрока могли получить бесплатную цифровую копию музыкального альбома группы «Socks and Ballerinas». Третья же доска имеет несколько более глубокое научное содержание. На ней изображена одна из реакций синтеза метамфетамина. Надпись «BLUE» подсказывает, что это отсылка к сериалу Breaking Bad, герои которого занимались изготовлением голубого метамфетамина. Эту пасхалку подтверждает и антураж лаборатории, в которой висит доска. Кроме досок, кое-какую научную информацию можно найти на разнообразных тетрадных листках и блокнотах. Здесь по большей части электротехника, связанная с записью на магнитные ленты и передачей аналоговых сигналов. На втором листке внизу можно заметить шкалу звуковых волн. Это, кстати, единственная физика, хоть как-то связанная с сюжетом игры. Согласно ему, в Старейший дом проникают враждебные силы, имеющие акустическую природу — как ни странно, надписи на белых маркерных досках практически ничего нам об этом не говорят. Последнее, что есть научного в текстурах игры, это небольшие блокнотные зарисовки. Что в итоге? Несмотря на свою схожесть, маркерные доски в Control и Black Mesa сильно отличаются по своей роли и организованности. Здесь они никак не связаны ни с сюжетом, ни с помещением, в котором их может найти Джесси. Они гораздо более эклектичны и собирают порой физику и математику совсем разных областей и уровней. Наконец, они не уникальны и повторяются. Причина, по которой все они имеют физико-математическую направленность, остается загадкой. Любопытно также, почему сложность содержания варьируется от школьных задач до фундаментальной квантовой теории. Вполне вероятно, что это эхо работы над предыдущей игрой Remedy — Quantum Break, где физике уделено гораздо больше сюжетного времени. Надеюсь, в будущем я найду время рассказать вам и про этот шутер.