Инженеры изготовили паутину, которая воспроизводит функции ловчей сети паука при помощи электростатических эффектов. В ходе испытаний она смогла самостоятельно очиститься от пыли, обнаружить приближение целей, захватить их и отпустить. По словам авторов, в будущем подобные технологии могут найти применение в мягкой робототехнике. Работа опубликована в Science Robotics.
Мягкая робототехника основана на использовании мягких (то есть легко деформируемых) материалов — эта особенность обеспечивает роботам гибкость, облегчает их адаптацию к разным задачам (от моделирования водных существ до проведения хирургических операций) и повышает безопасность взаимодействия с людьми.
Однако чтобы устройства из мягких материалов могли эффективно справляться со своей работой, необходимо создавать единые роботизированные системы из множества отдельных компонентов, функции которых дополняют друг друга — это требование может приводить к техническим трудностям. В таких ситуациях ученые часто заимствуют идеи из окружающей среды (например, наблюдая за движением живых организмов) — это позволяет исследователям не разрабатывать роботизированную систему целиком, а строить ее по аналогии с природной, копируя и воспроизводя необходимые функции.
Ученые из Южной Кореи под руководством Янгхун Ли (Younghoon Lee) и Вон Цзюнь Сун (Won Jun Song) из Сеульского Университета изготовили и протестировали искусственную паутину — устройство, которое работает по аналогии с ловчей сетью паука. Для этого авторы использовали нити из органогеля в силиконовой оболочке — гель содержал свободные ионы лития (Li+) и хлора (Cl-) — то есть обладал ионной проводимостью, а силиконовое покрытие поддерживало его форму и предотвращало загрязнение. Воссоздавая структуру паутины (и вместе с этим ее механические свойства), исследователи закрепили спираль из пары параллельных нитей на нейлоновом каркасе с помощью цианоакрилатного клея.
Чтобы воспроизвести функции естественной паутины, инженеры прикладывали к нитям электрическое напряжение — ионы в органогеле перемещались, и у поверхностей двух нитей скапливались нескомпенсированные заряды противоположных знаков. С одной стороны, это приводило к притяжению нитей друг к другу, а с другой стороны — к возникновению внешнего электрического поля.
Регулируя подаваемое напряжение, авторы управляли величиной внешнего поля, и вместе с этим — силой электростатического притяжения внешних предметов (целей) к искусственной паутине, которая возникала при перераспределении зарядов в предмете под влиянием поля нитей. Прикладывая к паутине переменное напряжение и подбирая его частоту, ученые добивались вибрации пары нитей (под действием периодически возникающей и исчезающей силы притяжения) и таким образом очищали устройство от нежелательного загрязнения — частичек пыли, которые в реальных условиях могут прилипать к паутине и, компенсируя избыточный заряд, ослаблять ее воздействие на целевые объекты.
Кроме того, исследователи протестировали систему обнаружения целевого предмета до непосредственного контакта с паутиной — для этого они использовали цели с искусственно нанесенным зарядом: при приближении к паутине такие предметы индуцировали напряжение в первоначально неактивном устройстве. Приборы измеряли это напряжение, и если оно превосходило пороговое значение в 0,1 вольт — активировали источник питания — паутина реагировала на приближение цели и захватывала ее.
В результате испытаний исследователям удалось захватить при помощи паутины предметы в диапазоне масс от 0,4 до 11 граммов, достигая притягивающего давления порядка одного килопаскаля. Очистка (длительностью в 60 секунд) искусственно покрытых пылью нитей при помощи вибрации позволила восстановить до 98,7 процента от первоначальной (до покрытия пылью) силы электростатического сцепления, а установка порогового напряжения для регистрации приближающихся целей — поддерживать (за счет избежания дополнительного загрязнения) силу электростатического сцепления в 32,5 раза выше, чем при непрерывной работе устройства.
Авторы отмечают, что предложенный экспериментальный подход можно применять не только для создания искусственных паутин, но и для других приборов — зажимных устройств, актуаторов и сенсоров.
Ранее мы писали о том, как ученые объяснили постоянство натяжения паучьей сети влиянием капель клейкой жидкости и получили искусственную паутину, которая не уступает в прочности настоящей.
Николай Мартыненко
Ее до сих пор не удавалось зарегистрировать из-за акустичности, электро-нейтральности и отсутствия взаимодействия со светом
Физики экспериментально обнаружили в рутенате стронция Sr2RuO4 особый вид плазмона — демон Пайнса. Существование этой частицы было предсказано 67 лет назад, но из-за акустичности, электро-нейтральности и из-за отсутствия взаимодействия со светом ее до сих пор не удавалось зарегистрировать. Чтобы обнаружить демона, ученые применили метод спектроскопии характеристических потерь энергии электронов с разрешением по импульсу. Статья опубликована в журнале Nature. В 1952 году американские физики Дэвид Пайнс и Дэвид Бом описали коллективное поведение электронного газа в плазме, которое можно представить в виде квазичастицы, которую назвали плазмоном. Некоторые виды плазмонов уже научились регистрировать. В 1956 году Пайнс предположил, что в металлах могут существовать особые плазмоны, которые возникают при колебании электронов из разных зон в противофазе, что приводит к модуляции заселенности этих зон. Такие плазмоны назвали демонами: они не обладают ни массой, ни электрическим зарядом, да и со светом не взаимодействуют, — поэтому их крайне сложно зарегистрировать обычными методами. Группа физиков под руководством Петра Аббамонте (Peter Abbamonte), профессора Университета Иллинойса, изучала рутенат стронция Sr2RuO4. Этот металл обладает тремя вложенными зонами, пересекающими энергию Ферми, и поэтому может быть кандидатом на появление в нем демона. Ученые использовали метод электронной спектроскопии потерь энергии электронов с высоким разрешением по импульсу в режиме отражения. Этот метод позволяет измерять как поверхностные, так и объемные возбуждения в металле при ненулевой передаче импульса q, где сигнатура демона ожидалась наиболее четкой. Спектры потерь энергии электронов при большой передаче энергии и больших переданных импульсах — более 0,28 единиц обратной решетки — демонстрируют бесхарактерный энергонезависимый континуум. При малых переданных импульсах — q менее 0,16 единиц обратной решетки — ученые обнаружили широкую плазмонную особенность с максимумом в районе 1,2 электронвольта. Ученые обнаружили, что в низкоэнергетическом режиме, при q менее 0,08 единицы обратной решетки, метод выявляет акустическую моду. Дисперсия моды оказалась линейной в большом диапазоне импульсов, с групповой скоростью примерно в 100 раз больше скорости акустических фононов, которые распространяются со скоростью звука, но на три порядка меньше, чем для поверхностного плазмона, распространяющегося со скоростью, близкой к скорости света. Однако скорость моды находится в пределах 10 процентов от предсказанной расчетами скорости для демона. Как отмечают ученые, это возбуждение явно электронное и это как раз и есть демон, предсказанный Пайнсом 67 лет назад. Наблюдение демона стало возможным, благодаря высокому разрешению в миллиэлектронвольт в используемом методе. Однако для дальнейшего изучения демонов ученые предлагают повысить точность, используя высокоэнергетические электроны в сканирующем просвечивающем электронном микроскопе с высоким разрешением, работающем в расфокусированной конфигурации. Физики отмечают, что требуется новая теория демонов, которая точнее опишет полученные экспериментальные данные. Эти квазичастицы могут быть ответственны за возникновение сверхпроводимости и играть важную роль в низкоэнергетической физике многих многозонных металлах. Изучение демонов и других видов плазмонов важно для описания коллективного поведения электронов в разных веществах. Например, недавно мы писали как физикам удалось увидеть часть плазмонной матрицы плотности.