Ученые синтезировали цепь из механически соединенных супрамолекулярных звеньев, способную к самосборке из органических мономеров. Контролируя скорость нагрева реакционной смеси и ее состав, авторы получили стабильные в течение нескольких месяцев катенаны из тороидальных наноразмерных колец длиной до 22 звеньев. Исследование опубликовано в журнале Nature.
Катенанами называют цепи из двух или нескольких звеньев-колец, соединенных не химически, а механически. Создание подобных систем — весьма нетривиальная задача. Одним из подходов к ее решению является разработка молекул, способных образовывать циклы и в то же время координироваться с другими молекулами для создания протяженных цепей. В случае, когда кольца состоят из множества ассоциированных молекул супрамолекулярного ансамбля, задача по их соединению становится особенно трудной. Однако изучение таких структур приведет к пониманию нетривиальных нанотопологических взаимодействий и разработкам материалов с особенными свойствами.
Сугата Датта (Sougata Datta) с коллегами из Университета Чиба синтезировали нанотопологическую структуру из супрамолекулярных колец с относительно большим выходом. В качестве мономера выступало органическое вещество с неполярными участками, которое также содержало атомы кислорода и связанного с водородом азота. Последнее позволяло молекулам образовывать друг с другом водородные связи, выстраиваясь в циклическую структуру, которую авторы назвали «розеткой» (rosette), из шести молекул мономера. Соединяясь друг с другом в стопки, розетки образовывали сегменты тора с радиусом кривизны около 13 нанометров.
Чтобы контролировать кинетику процесса и обеспечить желаемое образование супрамолекулярных колец, авторы регулировали скорость нагрева смеси и состав растворителя. Раствор мономеров в хорошем (полярном) растворителе вливали в девятикратный объем менее полярного растворителя. В процессе диффузии мономера в новый растворитель начиналась супрамолекулярная полимеризация, так как окружение молекул стало менее полярным, благоприятствуя стэкингу.
Анализ изображений атомно-силового микроскопа показал, что использование хлороформа и метилциклогесана в качестве растворителей приводит к образованию тороидальных колец из 44 процента количества введенного мономера. Три процента из всех колец оказались соединены по два. Тороиды из 100 розеток были размером 12,5 нанометра со внутренней полостью больше восьми нанометров, в которую могло поместиться два волокна, образовав таким образом цепь из трех связанных колец.
Оставшиеся в смеси побочные продукты, такие как короткие участки из связанных мономеров, авторы удалили с помощью нагревания смеси. При повышении температуры кусочки из «сложенных» розеток соединялись в длинные (больше микрона) закрученные волокна, которые легко было отделить фильтрованием от смеси со стабильными в этих условиях кольцами.
При добавлении мономера в полярном растворителе в смесь с кольцами, розетки складывались в новые тороиды вокруг первого звена, поверхность которого была неполярной. Добавляя последующие восемь порций мономера раз в секунду, авторы наращивали цепь. Самой длинной оказалась цепочка из 22 двух звеньев, а больше всего в смеси (почти 45 процентов всех цепей) было структур из двух соединенных колец. Цепи катенанов не разрушались в течение нескольких месяцев, что доказывает их кинетическую стабильность.
Предложенный подход к синтезу механически связанных супрамолекулярных наноструктур может пригодиться и для создания других макромолекулярных систем. Исследователи также предполагают, что в дальнейшем будет возможно создавать цепи из более ста звеньев, выделять их из раствора и создавать материалы с выдающимися физическими свойствами.
Другим примером структур с топологической связью являются молекулярные узлы. Три года назад ученые из Великобритании синтезировали сложнейшую молекулу-узел с восемью перекрещиваниями, которая может пригодиться в катализе. Также подобные системы применяют для создания молекулярных машин, о которых можно почитать в нашем материале «Машина из пробирки».
Алина Кротова
Термопокрывало охладит электромобиль днем и согреет ночью
Китайские инженеры создали терморегулирующий материал и термопокрывало на его основе, которое защищает электромобиль от жары и холода без дополнительных затрат энергии. Термопокрывало состоит из двух частей, одна из которых представляет собой ткань на основе диоксида кремния и нитрида бора, а вторая на основе фольги из алюминиевого сплава. Использование материала в качестве автомобильного чехла позволило в жаркую погоду сохранять температуру в салоне почти на 28 градусов ниже, чем в салоне автомобиля без чехла, а ночью поддерживать температуру батарейного блока электромобиля почти на 7 градусов выше температуры снаружи. Статья опубликована в журнале Device. Поддержание определенной температуры необходимо не только для комфортного самочувствия человека, но и для нормальной работы многих технических устройств. Например, в холодную погоду литий-ионные аккумуляторы теряют емкость, а летом в жару перегреваются, что может привести к сокращению их срока службы или даже возгоранию. Чтобы удерживать температуру в нужном диапазоне, требуется дополнительная энергия на нагрев или охлаждение, и на это может уходить довольно много энергии, особенно если речь идет о больших аккумуляторных батареях — как, например, в электромобилях. Однако существует способ регулировать температуру объекта пассивным образом, не затрачивая для этого дополнительную энергию. По такому пути пошли инженеры под руководством Кэ Хан Цуя (Kehang Cui) из Шанхайского университета транспорта. Они разработали материал, который за счет своих излучательных свойств позволяет регулировать радиационный нагрев и охлаждение, и изготовили из него термопокрывало, которое назвали «термальный плащ Януса». Название в честь двуликого бога из римской мифологии отражает двухстороннее строение материала. Внешняя его сторона играет роль солнцезащитного инфракрасного радиатора, а внутренняя — роль широкополосного инфракрасного отражателя. Внешняя часть материала изготовлена из тонких волокон на основе диоксида кремния, которые покрыты наночастицами нитрида бора с гексагональной кристаллической решеткой. Волокна материала переплетаются вместе и образуют ткань. С обратной стороны к ней прикрепляется внутренний слой, изготовленный из алюминиевого сплава. Внешняя и внутренняя стороны материала обладают различными оптическими свойствами: сторона с тканью имеет высокий коэффициент отражения солнечного света до 96 процентов, а также высокую излучательную способность до 97 процентов в инфракрасном диапазоне, совпадающем с атмосферным инфракрасным окном с длинами волн от 7 до 14 микрометров, в то время как фольга из алюминиевого сплава, расположенная с обратной стороны, обладает высокой отражательной способностью со значением около 93 процентов и не имеет потерь во всем инфракрасном диапазоне (5-16,7 мкм). Это позволяет плащу отражать большую часть падающего солнечного излучения и при этом остывать за счет излучения фотонов в инфракрасном диапазоне. В то же время с внутренней стороны происходит рециркуляция фотонов, излученных объектом — они отражаются от материала. Для оценки эффективности термального плаща исследователи провели испытания с использованием двух электрокаров, припаркованных на открытом воздухе в типичных погодных условиях в Шанхае. Один из автомобилей был укрыт термочехлом. В то время как температура салона незакрытого автомобиля достигала 51 градуса Цельсия в полдень, температура салона автомобиля, укрытого чехлом, была на 27,7 градуса ниже. И на 7,8 градуса ниже значения температуры на улице. Температура батарейного блока автомобиля без чехла соответствовала температуре окружающей среды, в то время как температура батареи электромобиля, укрытого материалом, была на 8 градусов ниже дневной температуры. В зимнюю ночь, когда уличная температура опускалась ниже нулевой отметки, термочехол помогал удерживать температуру батарейного блока на 6,8 градуса Цельсия выше, чем снаружи. Инженеры отмечают, что материал термопокрывала разработан таким, чтобы его можно было масштабировать в производстве. Для этого им пришлось пойти на некоторые компромиссы. Например, использование более тонких волокон кремния повысило бы солнечную отражательную способность, но они были бы менее прочными и не могли бы быть изготовлены с использованием промышленных технологий, уже существующих на рынке. Кроме того, используемые материалы, включая алюминий, кремний и нитрид бора, являются недорогими, что делает плащ легким, прочным и огнестойким. Он может использоваться не только для изготовления автомобильных чехлов, но и, например, в качестве материала для покрытия зданий и даже космических аппаратов. Ткани на основе материалов с разными излучательными свойствами могут использоваться и для создания одежды. Например, недавно мы рассказывали о бельгийских физиках, которые спроектировали ткань, одежда из которой может быть теплой или очень легкой в зависимости от того, какой стороной она надета. Это достигается за счет разницы между излучательными свойствами двух сторон ткани.