Физики продемонстрировали сверхбыстрое возникновение конденсата Бозе — Эйнштейна на двумерной решетке из наночастиц золота. Длительность процесса, по оценкам ученых, составляет около 100 фемтосекунд — таким образом, эксперимент позволяет изучать и регулировать эффекты квантовой динамики на очень коротком масштабе времени. Работа опубликована в журнале Nature.
Под идеальным конденсатом Бозе — Эйнштейна (или бозе-конденсатом) понимают равновесную систему из макроскопического числа бозонов (то есть частиц или квазичастиц с целым спином), которые находятся в одинаковом квантовом состоянии с минимальной энергией. Особенность бозе-конденсата в том, что он проявляет квантовые свойства на макроскопическом масштабе. Благодаря этому вещество можно эффективно использовать для изучения эффектов квантовой механики и применения их в технике. В более общем смысле к конденсату Бозе — Эйнштейна относят также неравновесные и квазиравновесные системы, что значительно расширяет набор наблюдаемых явлений.
Один из способов создать бозе-конденсат при комнатной температуре — использовать плазмонную решетку — двумерную структуру из регулярно расположенных металлических наночастиц. Преимущество таких систем в том, что форму наночастиц и расстояние между ними можно регулировать с высокой точностью (вплоть до единиц нанометров). Благодаря этому физические процессы (такие, как термализация, то есть установление теплового равновесия) можно наблюдать во времени — возмущения распространяются по регулярной решетке с постоянной скоростью, и расстояние становится мерой времени. Кроме того, высокоточная регулировка параметров решетки позволяет надежно выявлять и использовать их связь с характером возникающих квантовых эффектов.
Финские исследователи под руководством Пяйви Тёрмя (Päivi Törmä) из Университета Аалто изучили образование бозе-конденсата на прямоугольной плазмонной решетке с длиной стороны 100 микрометров, которую они составили из цилиндрических наночастиц золота. Диаметр цилиндров составлял около 100 нанометров, высота — около 50, а периоды решетки по двум направлениям — 570 и 620 нанометров. В ходе эксперимента металлические частицы образца были окружены раствором органического красителя (C42H49ClN2O4S), который ученые подвергали оптической накачке (то есть приводили молекулы в состояние энергетического возбуждения) при помощи коротких лазерных импульсов. Взаимодействие света с веществом провоцировало возникновение бозе-конденсата квазичастиц, состоящих преимущественно из фотона и коллективных колебаний электронов в металле. Образец, в свою очередь, испускал собственный световой пучок, который авторы регистрировали и анализировали при помощи системы оптических приборов, устанавливая, в частности, сформировался ли бозе-конденсат.
В результате исследователям удалось подтвердить образование конденсата Бозе — Эйнштейна за сверхкороткое время — около 100 фемтосекунд (10–13 секунды, тогда как обычная длительность на порядок больше — от тысяч фемтосекунд). Разрешение камер не позволило регистрировать столь кратковременный процесс, и для оценки его скорости физики регулировали продолжительность внешнего лазерного импульса. Так, при длительности импульса в 50 фемтосекунд конденсат наблюдался, а при длительности 300 фемтосекунд — уже не возникал: скорость провоцирующего процесса становилась недостаточной. Опыт также продемонстрировал значительный прогресс в интенсивности собственного светового пучка — спектрометр в экспериментальной установке в среднем регистрировал порядка миллиарда фотонов на один импульс, что в сотни тысяч раз превосходит результаты аналогичных измерений двухлетней давности и позволяет значительно точнее проверить законы квантовой статистики.
Авторы отмечают, что плазмонные решетки открывают большие перспективы в исследовании кратковременных взаимодействий света и вещества. Возможность с высокой точностью регулировать материал, форму и размеры таких поверхностей переходит в возможность надежно проверять или опровергать теоретические предсказания, исследуя их в широком диапазоне изменения параметров.
В недавней новости мы рассказывали о том, как бозе-конденсат повел себя в условиях микрогравитации на МКС, а в материале «Квантовые кентавры» — разбирались в особенностях этого состояния вещества на примере автомобилей.
Николай Мартыненко
Физики подтвердили это экспериментально
Физики обнаружили, что вероятность оказаться в определенном конечном состоянии для квантов света на 5,9 процента меньше теоретического предсказания. Это противоречит гипотезе о прямолинейных траекториях фотонов. В эксперименте ученые наблюдали при помощи интерферометра и оптической системы за распространением фотонов из подготовленных квантово-механических состояний, которые характеризуются суперпозицией координаты и импульса. Статья опубликована в журнале Physical Review A. Граница применимости классических законов физики на малых масштабах — вопрос, который по-прежнему исследуют ученые. Ранее мы разбирались в интервью с Михаилом Кацнельсоном, профессором Университета Радбауда, как квантовая механика переходит в классическую и наоборот. Этот переход можно проиллюстрировать на примере свободного движения частицы. В квантовой механике движению частицы сопоставляется эволюция пространственного оператора x̂(t) со временем, которая описывается в терминах начального состояния x̂(0) и импульса p̂x по следующей формуле: x̂(t) = x̂(0) + p̂x/m t. Если в эту формулу подставить конкретные значения x и px это уравнение будет соответствовать классическому первому закону Ньютона, который гласит, что частица массы m будет двигаться равномерно и прямолинейно в случае отсутствия действия сил на эту частицу. В случае безмассовых фотонов масса m заменяется на выражение h/(cλ), где h — постоянная планка, c — скорость света, а λ — длина волны фотона. Однако из-за соотношения неопределенности Гейзенберга невозможно одновременно определить конкретные значения x и px, но можно рассчитать вероятности P(L) и P(B) этим величинам принимать значения из интервалов L и B соответственно. В предположении прямолинейного распространения, частица окажется в положении M = L + Bt/m с вероятностью P(M, t). В 2017 году профессор Университета Хиросимы Хольгер Хофман (Holger F. Hofmann) предложил идею эксперимента по оптимизации одновременного контроля положений и импульсов квантовых частиц, максимизируя вероятность нахождения их значений в пределах двух четко определенных интервалов. Хофман рассчитал, что нижний предел вероятности P(M, t) определяется формулой: P(M, t) ≥ P(L) + P(B) − 1 и показал теоретически, что этот нижний предел может нарушаться квантовыми суперпозициями состояний, ограниченными интервалами положения и импульса. Однако экспериментально гипотезу Хофмана до сих пор не проверяли. Физики Такафуми Оно (Takafumi Ono), Нигам Самантарай (Nigam Samantarray) и Джон Рарити (John G. Rarity) из Университета Бристоля решили проверить это, экспериментально получив вероятности P(M, t), P(L) и P(B) на основе статистических распределений частиц. Для этого они использовали интерферометр, оптическую систему из щелей и линз, а также лазер, способный работать в однофотонном режиме. Путь фотонов разделяли по двум плечам интерферометра. В одном из плеч ученые установили щель заданной ширины L, чтобы создать пространственное состояние |L⟩, примерно соответствующее изображению щели. В другом плече — установили щель шириной Lʹ и тонкую линзу на фокусном расстоянии за щелью. В параксиальном приближении информация об импульсе перед линзой соответствует изображению за ней. Таким образом, ученым удалось создать суперпозицию пространственного |L⟩ и импульсного |B⟩ состояний фотонов. Для начального состояния ученые определили экспериментально вероятности P(L) и P(B), для этого они регистрировали распределения частиц, проходящих каждое плечо интерферометра независимо. На основании этих наблюдений физики получили теоретическую вероятность обнаружить фотоны в конечном состоянии в 13,1 процента. Физики при помощи ПЗС матрицы регистрировали фотоны на расстоянии z от щелей, подобранном таким образом, чтобы предсказанное Хофманом отклонение вероятности было практически максимальным. Такафуми Оно и его коллеги наблюдали интерференцию квантовых состояний положения и импульса фотонов. По мнению ученых эта интерференция и привела к уменьшению наблюдаемой в эксперименте вероятности на 5,9 процента. Ученые подчеркивают, что их экспериментальные результаты не дают новых интерпретаций траекторий квантовых частиц. Вместо этого на основе наблюдаемой статистики физики количественно показали, что, по крайней мере, первый закон Ньютона примерно на 5,9 процента не соответствует квантово-механическим вероятностям из-за эффектов квантовой интерференции. Авторы считают, что их результаты являются важным шагом на пути дальнейшего развития квантовой теории. Интерференция квантовых состояний не только нарушает первый закон Ньютона, но и может быть использована как инструмент в физике высоких энергий. О том, как физики исследуют и борются с квантовой неопределенностью мы писали в нашем материале «Далеко ли до предела».