Люди способны различать силу запаха, исходящего с той или иной стороны, сообщается в Proceedings of the National Academy of Sciences. Это показали китайские ученые в экспериментах с растворами пахучих веществ, индивидуальными для каждой ноздри, и движущимися точками. Раньше считалось, что органы обоняния, в отличие от органов зрения и слуха, не дают возможности определять пространственные характеристики стимулов.
Поскольку окружение организма непостоянно (то холодает, то теплеет, день сменяется ночью, другие организмы, а порой и неживые предметы перемещаются в пространстве), для понимания того, что происходит, желательно не просто зафиксировать появление стимула, но и то, откуда и куда он двигается. Человек способен определять направление зрительных (к примеру, приближается ли прохожий или удаляется) и слуховых стимулов (лают собаки из-за забора справа или слева). Стереовосприятие достигается за счет того, что два одинаковых по сути органа находятся на небольшом расстоянии друг от друга, и до одного из них стимул доходит быстрее, чем до другого, либо с одной стороны он оказывается сильнее, чем с другой.
По такой логике обоняние тоже может быть объемным: воздух с пахучими веществами приходит на обонятельный эпителий через две ноздри, и теоретически возможно, что слева молекулы соединения с запахом долетят до чувствительных клеток чуть раньше, чем справа. Однако на практике получается, что у людей рецепторы, связанные с обонятельным нервом, не различают направление стимулов. Если человек понимает, с какой стороны до него доносится запах, то благодаря окончаниям веточек тройничного нерва. Некоторые из них воспринимают химические, механические, тепловые и болевые стимулы. Соответственно, если в воздухе есть подходящие компоненты (например серосодержащие соединения, нужные для восприятия запаха лука) либо вещества, обеспечивающие запах, оказывают раздражающее действие на слизистые (ментол), можно уловить направление запахового стимула. Но это не обоняние в строгом смысле слова: тройничный нерв не связан напрямую с обонятельными центрами.
Исследователи из Института психологии Китайской академии наук во главе с Вэнем Чжоу (Wen Zhou) провели эксперименты со стимулами, которые не воспринимаются окончаниями тройничного нерва в носу. Они пригласили 216 здоровых некурящих добровольцев обоих полов принять участие в нескольких сериях экспериментов. Испытуемым на большом экране в течение 500 миллисекунд показывали 1800 точек, которые мерцали так, что создавалось ощущение, будто они движутся на человека. Нужно было определить, где находится центр, из которого движутся точки: справа, слева или посередине. Через секунду после того как человек ответил, ему показывали новый набор точек, и так несколько десятков раз.
Одновременно с этим людям давали подышать через трубки (индивидуальная трубка для каждой ноздри) из сосудов, частично заполненных водным раствором ванилина или раствором фенилэтилового спирта в пропиленгликоле. Пахучие вещества в сосудах были представлены в разной концентрации. Таким образом, в одну ноздрю попадало больше молекул ванилина (или фенилэтилового спирта), в другую — меньше или вообще нисколько. Также в нескольких сериях экспериментов добровольцев спрашивали, насколько интенсивным им кажется тот или иной запах. При этом одна из двух трубок соединялась с сосудом, где не было ни ванилина, ни фенилэтилового спирта.
Оказалось, что концентрация пахучего вещества влияет на восприятие зрительных стимулов: участникам экспериментов казалось, что точки двигаются на них с той стороны, с которой запах был сильнее (p<0,01). При этом ответить, с какой стороны больше чувствовался ванилин (или фенилэтиловый спирт), они не могли. Интересно, что сила сдвига восприятия точек, связанного с запахами, зависела не от абсолютной концентрации веществ, а от того, насколько она отличается между двумя ноздрями. Соотношение молекул пахучего вещества в растворах для одной ноздри и для другой составляло 4:1 больше сдвигало восприятие движения (p<0,001), чем соотношения 5:0 или 3:2.
Получается, что стереообоняние у человека имеет место, притом оно обеспечивается не только веточками тройничного нерва, но и непосредственно обонятельным нервом. Кроме того, авторы предполагают, что восприятие запахов с восприятием направления движений, они дополняют друг друга. Чжоу и коллеги считают, что мозг соотносит информацию от зрительной и обонятельной системы в медиальной височой и энторинальной коре, но чтобы это доказать, нужны эксперименты — скорее всего, с визуализацией активности различных участков мозга.
Обоняние подчиняется многим законам, которые работают для других сенсорных систем. Например, то, заметит человек запах или нет, зависит от того, куда направлено его внимание в конкретный момент. Если заставить людей искать на экране определенные буквы, 40 процентов не почувствуют даже сильный запах кофе в комнате, а если буквы нужно обнаружить среди фигур (это проще), запах кофе замечают почти все. Это явление называется слепотой невнимания (хотя в случае обоняния речь скорее не о слепоте) и работает как минимум еще для зрительных стимулов.
Светлана Ястребова
Проект получил название Unknome
Британские исследователи представили пополняемую и редактируемую пользователями базу данных белков, в которой они ранжируются по степени того, насколько мало о них известно. Проект призван обратить внимание на подобные белки и ускорить процесс их изучения. Публикация об этом появилась в журнале PLoS Biology. Как известно со времени прочтения человеческого генома, в нем закодировано примерно 20 тысяч белков. Применение протеомного и транскриптомного подхода в прошедшие после этого два десятилетия подтвердило, что большинство из них экспрессируются, и позволило выяснить назначение многих из них. Тем не менее, многие белки до сих пор остаются не охарактеризованными несмотря на то, что значительная их часть эволюционно консервативна и может выполнять критически важные функции. Во многом это связано с тем, что исследователи склонны фокусироваться на уже изученных белках, поскольку такие работы дают более предсказуемый результат. Чтобы систематизировать подход к идентификации и характеризации неизвестных белков, сотрудники Лаборатории молекулярной биологии британского Совета по медицинским исследованиям, Кембриджского и Оксфордского университетов под руководством Мэтью Фримена (Matthew Freeman) и Шона Манро (Sean Munro) создали и выложили в открытый доступ базу данных Unknome (буквально «незном», сокращенное от unknown genome — «неизвестный геном»). Она содержит ортологичные по базе PANTHER и собранные в кластеры последовательности белков человека и популярных модельных животных (таких, например, как кишечная палочка, дрозофила и мышь), взятые из базы UniProt. Им присваивается численная оценка «известности» (knownness) на основании аннотаций в проекте Gene Ontology (GO). Пользователи могут присваивать им свою оценку, исходя из имеющейся информации. Авторы работы оценили пригодность Unknome как основания для экспериментальной работы, выбрав с его помощью набор из 260 белков дрозофилы с неизвестными функциями (показатель известности 1,0 и менее), сохранившихся у людей. Нокдаун некоторых из этих генов с помощью РНК-интерференции приводил к утрате жизнеспособности. Функциональный скрининг остальных указал на участие некоторых в фертильности, развитии организма, передвижении, контроле качества синтезированных белков и устойчивости к стрессу. Выборочное выключение генов с использованием CRISPR/Cas9 определило два гена, отвечающих за мужскую фертильность, и компонент сигнального пути Notch, принимающего участив нейрогенезе, онкогенезе и связанного с различными неврологическими заболеваниями и пороками развития. Исследователи заключают, что тщательная оценка недостаточности знаний о функции гена и кодируемого им белка предоставляет ценный ресурс для поиска направлений биологических исследований и, возможно, стратегий их эффективного финансирования. Иногда на точность генетических баз данных могут влиять весьма неожиданные факторы. В материале «Наследили тут» можно почитать о том, как данные в одной из таких баз оказались испорчены неизвестными паразитами.