Ученые обнаружили новое антибактериальное вещество, активное против грамположительных и грамотрицательных бактерий и не вызывающее резистентность. Как говорится в статье, опубликованной в журнале Cell, вещество действует сразу на две цели: на метаболизм фолатов и на клеточную мембрану бактерий. Из-за двойного механизма действия бактерии не смогли выработать устойчивость к новому веществу.
За последние 20 лет для практического применения в медицине было одобрено всего шесть новых классов противомикробных препаратов, причем ни один из них не активен против грамотрицательных бактерий. Для сравнения, за первые 30 лет после открытия пенициллина в 1929 году было описано и внедрено в практику более двадцати классов антибиотиков. Такое резкое снижение темпов разработки и создания новых антимикробных препаратов часто связывают с экономическими факторами, ведь создание такого препарата стоит дорого и занимает много времени, а клинические испытания он может и вовсе не пройти.
Поэтому фармакологические компании редко идут на риск, из-за чего в мире сложился кризис общественного здравоохранения: эволюция мультирезистентных бактерий, горизонтальный перенос генов резистентности между бактериями вкупе со старыми и уже не действующими препаратами — все это привело к появлению бактерий, на которые не действует практически ни один известный на сегодняшний день антибиотик. Самый яркий представитель этой когорты — метициллинрезистентный золотистый стафилококк, или MRSA. В нашем большом материале «Конец прекрасной эпохи» мы рассказывали про основные проблемы, с которыми сталкиваются врачи по всему миру, пытаясь лечить инфекции, вызванные устойчивыми к антибиотикам бактериями, и как вообще получилось, что потомки спасшего когда-то миллионы людей пенициллина не могут помочь нам сегодня.
Вопрос лечения резистентных бактериальных инфекций с каждым годом становится все острее. С этой целью модифицируют старые антибиотики, применяют аналоги витамина А, но, возможно, полностью решить эту проблему поможет создание новых классов антибиотиков, не вызывающих резистентности у микроорганизмов.
Группа ученых под руководством Джеймса Мартина II (James K. Martin II) из Принстонского университета занималась поиском антибиотиков широкого спектра с новыми механизмами действия на бактериальные клетки. Исследование проводили на кишечной палочке, лишенной липополисахарида. Среди 33000 уникальных молекул ученые обратили внимание на одну — SCH-79797. Это антагонист рецептора, активируемого протеазой, первого типа, который обнаруживается на тромбоцитах, клетках иммунной системы, клетках эпителия и многих других клетках. Рецепторы этого класса участвуют в регуляции гемостаза и воспаления. Сам же SCH-79797 увеличивает способность нейтрофилов убивать бактерии, действуя, возможно, как антибиотик. Учитывая, что исследования, посвященные его антикоагулянтной активности, показали, что по крайней мере пять миллиграмм SCH-79797 на килограмм массы тела могут безопасно переноситься у животных, ученые решили исследовать, как же это вещество убивает бактерии.
При культуральном исследовании обнаружилось, что SCH-79797 подавляет рост грамотрицательных бактерий Neisseria gonorrhoeae и Acinetobacter baumannii, и грамположительных бактерий Enterococcus faecalis и Staphylococcus aureus. В том числе снижался рост колоний мультирезистентных штаммов N. gonorrhoeae и MRSA.
Исследование in vivo на личинках восковой моли, зараженной летальной дозой A. baumannii, показало низкую токсичность вещества: личинке вводили четырехкратную минимальную ингибирующую концентрацию SCH-79797, и она не вызвала значимых изменений жизнедеятельности. При этом выживаемость личинки значимо возросла (p < 0,001).
При высеивании метициллинрезистентного золотистого стафилококка на агар, содержащий четырехкратную минимальную ингибирующую концентрацию, ученым не удалось выделить стабильных мутантов, резистентных к SCH-79797. Для количественного определения показателей резистентности последовательно выращивали две биологически независимые культуры S. aureus и MRSA на агаре с сублетальными концентрациями SCH-79797, а также с тремя контрольными антибиотиками: новобиоцином, триметопримом и низином. Через 25 дней бактерии не демонстрировали перекрестной устойчивости к SCH-79797. Чтобы распространить эти результаты на грамотрицательные виды, ученые повторили последовательное выращивание двух биологически независимых культур A. baumannii. Резистентность бактерии оставалась постоянной для SCH-79797, но повышалась для всех других антибиотиков, включая гентамицин. Таким образом, отсутствие резистентности не зависело от вида бактерии.
С помощью программного анализа ученые доказали отличие механизма действия SCH-79797 от механизмов других известных антибиотиков. Чтобы найти искомую цель, с которой взаимодействует SCH-79797, ученые использовали анализ теплового сдвига: интактные клетки и клетки, обработанные препаратом, нагревают до определенных температур и собирают денатурированные растворимые белки при каждом значении температуры. Белки, которые связываются с препаратом, термически стабилизируются, что приводит к сдвигу температуры, при которой эти белки осаждаются. Оказалось, что SCH-79797 значительно изменил термическую стабильность дигидрофолатредуктазы (точнее ее гомолога у E. coli — FolA). В качестве положительного контроля использовали хорошо описанный ранее антибиотик триметоприм, нацеленный на дигидрофолатредуктазу (DHFR), и обнаружили, что он также термически стабилизирует свою известную цель — FolA.
Чтобы определить, как SCH-79797 влияет на метаболизм фолатов в живых клетках, ученые использовали масс-спектрометрию для измерения относительного количества пулов метаболитов фолата в E. coli NCM3722, обработанных SCH-79797. Клетки E. coli NCM3722 обрабатывали SCH-79797 в концентрации 13,9 миллиграмм на миллилитр (13 минимальных ингибирующих доз) в течение 15 мин. В ответ на это уровни субстрата DHFR — 7,8-дигидрофолата — выросли в 10 раз по сравнению с необработанными клетками, в то время как уровни метаболитов фолата значительно снизились. Такая картина характерна при ингибировании дигидрофолатредуктазы (FolA у E. coli). Аналогичная картина наблюдается при действии триметоприма — известного ингибитора DHFR.
Чтобы определить, ингибирует ли SCH-79797 дигидрофолатредуктазу непосредственно, ученые получили очищенный фермент FolA и измерили его активность в зависимости от концентрации вещества. Было обнаружено, что концентрация полумаксимального ингибирования FolA составляет 8,6 ± 3 микромоль на литр. Также они измерили начальную активность FolA при различных концентрациях субстрата дигидрофолата, чтобы установить конкурентноспособность SCH-79797. При концентрации 8,6 микромоль на литр константа Михаэлиса увеличивается с 32 ± 25 микромоль на литр до 100 ± 80 микромоль на литр. Эти результаты указывают на то, что SCH-79797 функционирует, по крайней мере частично, как конкурентный ингибитор активности FolA на его субстрате.
Поскольку клетки, устойчивые к триметоприму, оказывались чувствительными к SCH-79797, ученые предположили, что у этого вещества есть еще одна мишень, при действии на которую бактериальные клетки погибали. Проточная цитометрия обработанных SCH-79797 клеток с флуоресцентными красителями выявила значительные изменения поляризации и проницаемости мембраны. Эти эффекты на мембрану не являются вторичными последствиями ингибирования дигидрофолатредуктазы, так как обработанная триметопримом кишечная палочка не показала существенных изменений поляризации и проницаемости мембраны. Таргетный эффект SCH-79797 на мембрану также не является видоспецифичным, так как аналогичные результаты были получены у B. subtilis. Эти результаты показывают, что независимо от своей способности ингибировать дигидрофолатредуктазу, SCH-79797 нарушает как мембранный потенциал, так и проницаемость клеточной мембраны.
Химический анализ SCH-79797 показал, что его ядро представлено пирролохиназолиндиамином, который ответственен за связывание с дигидрофолатредуктазой. Одной из двух боковых групп оказалась гидрофобная изопропилфенильная группа. Именно она изменяет проницаемость и поляризацию клеточной мембраны бактерии. Ученые присоединили к SCH-79797 еще одну фенольную группу и получили более гидрофобное вещество IRS-16. В эксперименте IRS-16 показал высокую антибактериальную активность, связанную с нарушением метаболизма фолатов у бактерий и изменениями проницаемости и поляризации их клеточной стенки.
SCH-79797 подавлял рост некоторых клеточных линий млекопитающих в связи с чем, ученые сосредоточили свое внимание на IRS-16, поскольку его летальная доза была в сто раз больше дозы, необходимой для убийства бактерий. Максимальная переносимая доза IRS-16 составила 15 миллиграмм на килограмм массы при внутривенном введении, при этой дозе концентрация IRS-16 в плазме достигала максимума — 1,4 миллиграмма на миллилитр с периодом полураспада 15,8 часов. Исследование микросомального аппарата печени исследуемых мышей показало высокую стабильность IRS-16.
Наконец, ученые определили, обладает ли IRS-16 антибактериальной активностью в модели бактериальной инфекции у мыши. С этой целью они смоделировали вагинальную инфекцию N. gonorrhoeae, поскольку для этого грамотрицательного патогена существует острая потребность в новых антибиотиках из-за широко распространенной резистентности к существующим препаратам. В бактериальной культуре IRS-16 проявлял устойчивую активность в отношении N. gonorrhoeae с минимальной ингибирующей концентрацией 0,03 миллиграмма на миллилитр. IRS-16 должен сохраняться у мышей в концентрациях выше 0,03 миллиграмма на миллилитр в течение почти 48 ч. После заражения мышей N. gonorrhoeae им внутривенно ввели дозу из расчета 10 миллиграмм на килограмм. Через 26 часов IRS-16 достоверно снижал нагрузку N. gonorrhoeae (Р < 0,05). Высокий терапевтический индекс и фармакокинетический профиль подтверждает, что IRS-16 может действовать как эффективный антибиотик в модели гонореи мышей in vivo.
Если вам интересно узнать что-то еще из мира новых антибиотиков, то обязательно обратите внимание на книгу Мэтта Маккарти, в которой он рассказывает про новый антибиотик, применяемый при инфекциях кожи и мягких тканей, приводит клинические случаи и рассуждает на тему будущего антибиотикотерапии.
Вячеслав Гоменюк