Американские материаловеды превратили обычные полиуретановые губки в материал для сбора нефти с поверхности воды. Благодаря гидрофобному и липофильному покрытию такие губки эффективно впитывают нефть, а добавка магнитных частиц поможет снизить вязкость собранной нефти, чтобы ее регенерировать. Результаты исследования опубликованы в журнале Industrial & Engineering Chemistry Research.
Для устранения разливов нефти в водоемах известно четыре подхода: сжигание нефти на поверхности воды, откачивание нефтеводяной эмульсии насосами, использование дисперсантов для разбивания нефтяной пленки на поверхности и последующего поглощения нефтяных капель микроорганизмами и сбор с помощью твердых сорбентов. Последний способ наиболее предпочтителен, как с экологической, так и с экономической точки зрения. Во-первых, нефть удаляется из экосистемы навсегда, а не превращается, например, в углекислый газ или не идет в пищу живым организмам. Во-вторых, часть собранной таким образом нефти можно регенерировать.
Американские материаловеды под руководством Винайяка Дрэвида (Vinayak P. Dravid) из Северо-Западного университета разработали новый сорбент с липофильными, гидрофобными и магнитными свойствами. За основу взяли коммерчески доступные губки из полиуретана с пористостью около 95 процентов и покрыли их углеродным нанокомпозитом с наночастицами магнетита Fe3O4 и магнетита, допированного марганцем MnFe2O4.
Композит из графита с наночастицами синтезировали с помощью ультразвука: в предыдущих работах группы Дрэвида было показано, что таким образом можно интеркалировать наночастицы магнетита между графитовыми слоями. Чтобы нанести композит на пористую губку, кусочки губки сначала опускали в воду, а затем помещали в суспензию графита с наночастицами и снова обрабатывали ультразвуком в течение десяти минут.
После ультразвуковой обработки губки оставляли в суспензии еще на час, затем промывали водой и сушили при температуре 60 градусов Цельсия в течение часа. После такой обработки образуется стабильное покрытие нанокомпозита на поверхности губки. Структура композита была подтверждена методом дифракции электронов в выбранной области, а энергодисперсионная спектроскопия показала, что его частицы равномерно распределились по всей поверхности полиуретановой губки.
Графитовое покрытие делает губки гидрофобными и липофильными. Они плохо смачиваются водой и водными растворами (контактный угол около 120 градусов, незначительно меняется в зависимости от кислотности раствора), в то время, как для нефти было зафиксировано очень хорошее смачивание с почти нулевым контактным углом. Авторы отмечают, что при необходимости гидрофобность губок можно еще увеличить, добавив в пропитывающую суспензию больше графена.
Благодаря сочетанию гидрофобности и олеифильности при погружении в смесь воды с неполярной жидкостью, губка впитывает исключительно неполярную жидкость. Благодаря высокой пористости материал может абсорбировать массу жидкости, многократно превышающую собственную массу: например, около 18 граммов гексана и 26 граммов моторного масла на один грамм. Количество абсорбированной нефти определяется плотностью и вязкостью, например, в случае техасской нефти удалось собрать 19 граммов на грамм губки, а в случае тяжелой и вязкой азербайджанской — около 32 граммов. Губки эффективно поглощают нефть с поверхности щелочных и кислых растворов, а также растворов солей, что очень важно для сбора нефти с поверхности морей и соленых озер. Губки можно использовать много раз — после десяти циклов они сохраняли более 90 процентов от своей изначальной эффективности.
Добавка суперпарамагнитных частиц Fe3O4 и MnFe2O4 нужна по двум причинам. Во-первых, это облегчает сбор губок с поверхности — достаточно поднести магнит, не нужно тянуть и сжимать губку, что могло бы привести к частичной потере собранной нефти. Кроме того, поместив губку в радиочастотное магнитное поле можно более эффективно регенерировать собранную нефть. Суперпарамагнитные частицы под действием поля нагреваются, в результате вязкость нефти снижается и она легче десорбируется с поверхности губки. Чтобы подтвердить это предположение, авторы провели эксперименты с самой вязкой азербайджанской нефтью. За 50 минут обработки радиочастотным полем с частотой 300 килогерц удалось без механического воздействия регенерировать 25 процентов собранной нефти — на треть больше, чем в контрольном эксперименте, где магнитное поле не использовалось.
Авторы работы особо подчеркивают, что предложенный ими материал не содержит дорогих компонентов, а его синтез прост в исполнении и не требует дорогостоящего оборудования. Процесс нанесения покрытия можно интегрировать в уже существующие промышленные линии производства губок, поэтому технология может быть готова к внедрению в самое ближайшее время.
Ранее китайские материаловеды сконструировали губчатый воздушный фильтр для наноразмерных частиц. Основа фильтра делается из меланил-формальдегида, который пропитывают ионной жидкостью. Подавая на фильтр напряжение, можно управлять его электростатической силой, то есть способностью улавливать мелкие частицы.
А более подробно об известных способах борьбы с нефтяными разливами можно прочитать в нашем материале об аварии на норильской ТЭЦ-3.
Вклад этих источников составил 25 и 75 процентов соответственно
Ученые определили источники радиоактивного 137Cs в мясе баварских кабанов. Оказалось, что происхождение в среднем 75 его процентов связано с аварией на Чернобыльской АЭС, а 25 процентов — с испытаниями ядерного оружия в середине прошлого века. Причем в некоторых регионах Баварии активность оружейного137Cs в кабанятине так высока, что этого достаточно для превышения европейских норм безопасности. Результаты исследования опубликованы в статье для журнала Environmental Science & Technology. Авария на Чернобыльской АЭС в апреле 1986 года привела к загрязнению обширных территорий Европы радиоактивными изотопами йода, цезия, стронция и других химических элементов. Например, в Баварии, регионе на юго-востоке Германии, активность изотопа цезия 137Cs в поверхностных слоях почвы вскоре после аварии составляла 102-105 беккерелей на квадратный метр. Позднее радиоактивные изотопы проникли из почвы в организмы растений и животных. В частности, активность 137Cs в мясе баварских кабанов (Sus scrofa) в 1986 году превышала норму на один-два порядка. За почти четыре десятилетия, прошедших с момента аварии, изначально высокая концентрация 137Cs в организмах животных из лесов Баварии резко снизилась за счет физического распада и экологических процессов. Однако по неизвестной пока причине в мясе местных кабанов активность этого радионуклида мало изменилась с 1986 года. В некоторых случаях темпы снижения концентрации 137Cs в их телах даже ниже скорости его физического распада. Это явление известно как «парадокс кабана». Согласно наиболее убедительному объяснению, кабаны получают новые порции 137Cs за счет того, что регулярно поедают подземные грибы, в которых, в свою очередь, этот изотоп накапливается в большом количестве. Команда исследователей под руководством Георга Штайнхойзера (Georg Steinhauser) из Венского технического университета решила больше узнать об источниках радиоактивных изотопов в мясе кабанов из Баварии. В 2019-2021 годах исследователи получили 48 образцов свежей кабанятины у баварских охотников из 11 округов этой земли. В основном это были ткани языка. Медианная активность 137Cs в образцах составила 1,7 килобеккереля на килограмм. При этом она заметно колебалась от округа к округу в диапазоне от 0,37 килобеккереля на килограмм до 14 килобеккерелей на килограмм. В 88 процентах образцов активность 137Cs оказалась выше норматива, установленного немецким правительством. Примечательно, что по сравнению с аналогичными пробами, взятыми в 2001 году, концентрация 137Cs в мясе кабанов почти не изменилась. Чернобыльская авария не была единственной причиной появления 137Cs в почвах Баварии и организмах местных животных. До нее этот изотоп также попадал в окружающую среду в результате ядерных испытаний. Чтобы определить вклад обоих источников, Штайнхойзер с соавторами оценили соотношение концентрации 135Cs/137Cs в мясе кабанов из разных округов Баварии — оно составило 0,67-1,97. Затем полученные данные сравнили с результатами анализа биологических образцов из других регионов мира, в том числе из Чернобыля и Фукусимы (где почти весь 137Cs попал в окружающую среду в результате аварий на АЭС) и отдаленные от них регионы, включая США, Канаду и Гренландию (здесь основным или единственным источником 137Cs являются ядерные испытания). Соотношение 135Cs/137Cs в телах кабанов из Баварии оказалось промежуточным между Чернобылем и Фукусимой с одной стороны (в этих местах оно составляло 0,31–0,73) и регионами мира, где крупных аварий на АЭС не было, с другой (1,21–2,84). Это подтверждает, что радиоактивный цезий, поступающий в организмы баварских кабанов, имеет два источника происхождения. Для дальнейших расчетов исследователи взяли за основу соотношение 135Cs/137Cs из серии образцов легочной ткани человека, собранных в Вене в 1960 годах. Поскольку эти образцы были взяты до первых крупных аварий на АЭС, весь 137Cs попал в них в результате испытаний ядерного оружия. Соотношение 135Cs/137Cs в них составило 1,99. Судя по всему, в тех регионах Баварии, где соотношение 135Cs/137Cs в кабанятине выше, чем в венских образцах, основным источником 137Cs являются испытания ядерного оружия, а в тех, где ниже — авария на Чернобыльской АЭС. Основываясь на этой идее, авторы предложили следующую модель распространения 137Cs в экосистемах Баварии (и всей Центральной Европы). Вероятно, радиоактивный цезий, который попал в атмосферу в результате ядерных испытаний, к концу века достиг поверхности земли и был включен в пищевые цепи всего региона. Соотношение 135Cs/137Cs в нем высокое. В то же время чернобыльский радиоактивный цезий, с низким соотношением 135Cs/137Cs, в основном осел в горах и предгорьях. На финальном этапе работы Штайнхойзер и его коллеги провели моделирование и пришли к выводу, что средний вклад чернобыльского 137Cs в мясе баварских кабанов составляет 75 процентов, а оружейного — 25 процентов. Наименьшая доля 137Cs чернобыльского происхождения была выявлена в кабанятине с севера Баварии, однако даже в Центральной и Южной Баварии есть регионы, где доля оружейного 137Cs в мясе кабанов составляет 40-50 процентов. При этом в 25 процентах образцов активность 137Cs, происходящего от испытаний ядерного оружия, настолько велика, что его одного достаточно, чтобы превысить европейские нормы безопасности. Результаты исследования демонстрируют, что радионуклиды, попавшие в окружающую среду в результате ядерных испытаний середины прошлого века, до сих пор присутствуют в экосистемах. Причем, как в случае баварских кабанов, их активность порой достаточно велика, чтобы угрожать здоровью людей. Ранее зоологи выяснили, что панцири черепах хранят информацию о ядерных испытаниях и работах с ядерным топливом. У тех черепах, что жили рядом с местами испытания ядерного оружия, соотношение 235U/238U в роговых щитках повышено, а у тех, что обитали недалеко от заводов по производству ядерного топлива, наоборот, понижено. При этом соотношение 236U/238U повышено в обоих случаях.