Консолидация памяти во сне потребовала нейрогенеза гиппокампа

Дизайн эксперимента: у мышей формируют память на контекст и тестируют ее; на каждом этапе и во время быстрого сна записывают активность молодых нейронов
Deependra Kumar et al. / Neuron, 2020
Нейроны зубчатой извилины гиппокампа, которые появляются в результате нейрогенеза у взрослых мышей, участвуют в консолидации контекстно-зависимой памяти во время фазы быстрого сна. Большинство молодых нервных клеток, которые возбуждались во время сна, были активны и при предшествующем обучении. Подавление или активация новых нейронов во время быстрого сна нарушили консолидацию памяти и работу немедленных ранних генов клеток зубчатой извилины, а на самих молодых нейронах появились удлиненные шипики. Исследование опубликовано в журнале Neuron.
Зубчатая извилина гиппокампа — одна из двух областей, в которой обнаружен взрослый нейрогенез, но функции молодых нейронов в нем пока изучены мало: отчасти из-за того, что таких клеток немного, а отчасти — из-за того, что их открыли относительно недавно. Уже ясно, что молодые нейроны играют важную роль в формировании памяти — сам гиппокамп является ключевой структурой для долговременной эпизодической памяти, а новые нейроны особенно пластичны, что удобно для создания памятных следов.
Чтобы доказать участие молодых нервных клеток в процессах памяти, в нескольких работах их затормаживали с помощью методов оптогенетики во время обучения или извлечения памяти. В одном из экспериментов активность молодых нейронов пробовали как понижать, так и повышать. Интересно, что все перечисленные манипуляции привели к нарушению памяти — значит, для запоминания важна тонкая настройка новых нервных клеток.
Ученые из Великобритании, США и Японии под руководством Масанори Сакагути (Masanori Sakaguchi) из Университета Цукубы с помощью кальциевой визуализации регистрировали активность молодых нейронов мышей во время обучения и при последующей консолидации памяти во сне. Они создали линию мышей, в молодых (меньше четырех недель) нейронах которых экспрессировался кальциевый биосенсор. При активации клетки в ее цитоплазму входил кальций, и сенсор начинал флуоресцировать. Свечение в гиппокампе улавливал микроэндоскоп — микроскоп, который крепится на голове мыши и позволяет ей свободно двигаться.
Активность молодых нейронов во время бодрствования была выше, чем во сне, а после обучения новые нейроны во время фазы быстрого сна возбуждались ещё меньше (p < 0,05). Ученые решили проследить за динамикой активности индивидуальных нейронов до, во время и после обучения. Больше половины нейронов, которые были активны во время фазы быстрого сна после формирования памяти, были возбуждены и во время самого обучения, но не при извлечении памяти, тогда как активность остальных нейронов оставалась постоянной во время всех экспериментальных процедур. Значит, часть молодых нервных клеток участвует в формировании памятного следа и его перестройке во время фазы быстрого сна, хотя в целом активность новых нейронов в фазу быстрого сна после обучения снижается.
Затормаживание молодых нейронов не нарушило тета-ритмы гиппокампа, но снизило экспрессию ряда немедленных ранних генов - это указывает на нарушение активности нейронов и их синаптической пластичности, необходимых для консолидации памяти. После обучения на молодых нейронах появилось больше шипиков, а их головки стали крупнее. В нейронах, активность которых подавляли во время фазы быстрого сна, шипики были более длинными. Удлинение отростков дендритов связывают с ослаблением синаптических связей и десинхронизацией возбуждения нейронов; длинные шипики также характерны для молодых нейронов мышей с нарушениями рабочей памяти.
Исследованию группы Масанори Сакагути предшествовала работа команды Натана Дэниелсона (Nathan Danielson) 2016 года. Тогда ученые впервые попробовали изменять активность молодых нейронов и выяснили, что тонкая настройка работы новых клеток необходима для успешной консолидации памяти.
Алиса Бахарева