В CERN провели первую в мире лазерную спектроскопию короткоживущих радиоактивных молекул. Эксперимент позволяет исследовать нестабильные системы со временем жизни от сотых долей секунды и искать явления за пределами Стандартной модели. Статья опубликована в журнале Nature.
Радиоактивными принято называть молекулы, в состав которых входят атомы с нестабильными ядрами. В некоторых из таких систем по сравнению с одиночными атомами значительно усиливаются эффекты, связанные с нарушением симметрий обращения координат и времени. Это придает экспериментам по измерению свойств радиоактивных молекул важность с точки зрения фундаментальной физики. Данные подобных опытов дают возможность проверять теоретические модели и выходить за рамки их предсказаний. С другой стороны, в таких исследованиях ученые сталкиваются с целым набором проблем. Взаимодействия между атомами значительно влияют на систему квантовых уровней и усложняют спектроскопию молекул, тогда как нестабильность ядер ограничивает время жизни, доступную массу и скорость производства таких систем.
Коллектив ученых из девяти стран, который возглавил Р. Ф. Гарсия Руис (R. F. Garcia Ruiz) из Европейской организации по ядерным исследованиям (CERN), впервые провел лазерную спектроскопию радиоактивных молекул монофторида радия (RaF). Физики проделали эксперимент на базе комплекса ISOLDE (Isotope Separator On-Line Detector) — эта установка позволяет производить и сортировать изотопы в широком диапазоне масс.
Атомы радия, которые необходимы для образования молекул RaF, ученые изготовили более чем за месяц до проведения спектроскопии. Для этого они на протяжении двух суток облучали ускоренными до энергии 1,4 гигаэлектронвольт пучками протонов мишень из карбида урана. После этого материал поместили в герметичную камеру, которую заполнили аргоном, и только через 33 дня приступили к формированию радиоактивных молекул. Чтобы заставить изотопы радия диффундировать к поверхности мишени, экспериментаторы создали температуру в 1300°C и понизили давление до 10–5 миллибар (в сто миллионов раз меньше типичного атмосферного давления). При помощи специального клапана они ввели в среду газообразный тетрафторметан (CF4), который взаимодействовал с атомами радия. Продуктом реакции становились молекулярные ионы RaF+, которые удалялись из мишени электростатическим полем и проходили высокоточную (с разрешением 1÷2000) сортировку в масс-сепараторе. Затем пучок RaF+ на протяжении десяти миллисекунд замедляли в гелии при комнатной температуре. Наконец, замедленные молекулярные ионы проходили через камеру с парами натрия (который имеет близкую энергию ионизации) и, забирая у последнего электрон, становились нейтральными молекулами RaF, в то время как оставшиеся заряженными ионы RaF+ установка отклоняла в сторону.
После этого радиоактивные молекулы оказывались в области высокого вакуума (при давлении 10-10 миллибар, что уже в 10 триллионов раз меньше атмосферного), где на них поочередно светили двумя лазерными лучами. Длину волны первого лазера ученые регулировали в диапазоне от 600 до 780 нанометров, чтобы энергия фотона совпала с энергией возбужденного уровня молекулы. Второй лазер имел фиксированную длину волны в 355 нанометров — с помощью энергии его излучения молекула переходила из возбужденного состояния в ионизированное (тогда как на основном уровне энергии для такого перехода не хватало). Возникающие молекулярные ионы RaF+ регистрировал детектор. Снимая зависимость числа событий на детекторе от длины волны первого лазера, физики измерили спектр энергетических возбуждений (то есть набор квантовых уровней энергии) радиоактивной молекулы.
Авторы отмечают, что разработанный опыт можно применять для изучения не только монофторида радия, но и целого ряда других нестабильных соединений со временем жизни от десятков миллисекунд, которые ранее не удавалось исследовать экспериментально (среди них RaOH, RaO, RaH, AcF и ThO). Кроме того, разработки в этой области помогут развитию таких отраслей, как квантовая химия и радиохимия, и даже принесут пользу астрофизикам — последние в будущих наблюдениях смогут надежно идентифицировать нужные радиоактивные молекулы.
За последний месяц мы рассказывали о результатах еще нескольких передовых экспериментов: физикам удалось создать запутанность между атомом и молекулой, обнаружить кристаллы Паули и заменить электрон на пион в атоме гелия.
Николай Мартыненко
А также измерит расстояние до них
Американские ученые разработали технологию пассивного теплового зрения HADAR, которая по инфракрасному изображению получает информацию о температуре, материалах и текстуре поверхности объектов, их излучательной способности, а также умеет измерять расстояние. Технология позволяет в ночных условиях получать изображение, сопоставимое по качеству со стереоскопическими изображениями, получаемыми обычными RGB камерами при дневном освещении. Статья опубликована в журнале Nature. Для автономной навигации и взаимодействия с людьми роботам и беспилотникам нужна информация об окружении, которую они получают с помощью камер, лидаров, сонаров или радаров. Однако обычные камеры зависят от условий освещенности и плохо работают в ночное время и при плохой погоде. Кроме этого информация, получаемая с камер не содержит физического контекста, что может приводить к некорректной работе нейросетевых алгоритмов автопилота, который, к примеру, не может отличить настоящего человека от манекена. Активные сенсоры, такие как лидары и радары, при резком росте их числа начинают взаимно влиять друг на друга. Выходом могло бы стать использование в условиях недостаточной видимости камер, работающих в инфракрасном диапазоне. Однако из-за так называемого «эффекта призрачности» получаемые тепловизором изображения обычно выглядят как пятна без четкой текстуры. Это связано с тем, что поверх отражающихся от объекта инфракрасных лучей, которые несут информацию об особенностях его рельефа, накладывается его собственное тепловое излучение, которое засвечивает эту полезную информацию. Группа ученых под руководством Зубин Джакоб (Zubin Jacob) из Университета Пердью смогла справиться с этой проблемой. Они разработали технологию под названием HADAR (акроним от слов heat-assisted detection and ranging), которая с помощью машинного обучения извлекает из изображений, полученных в инфракрасном диапазоне, информацию о температуре объектов, излучательной способности материалов, из которых они состоят, а также их физической текстуре. Кроме того, технология позволяет определять расстояние до объектов на изображении. Выделение информации о собственном излучении объектов позволяет избавиться от «эффекта призрачности» и получить информацию о текстуре. Для этого авторы используют данные из библиотеки материалов, которая содержит информацию об их излучательной способности. Инфракрасное изображение фиксируется с помощью гиперспектральной камеры, после чего данные поступают на вход нейросетевой модели, которая производит декомпозицию исходных данных, выделяя из них информацию о температуре, собственном излучении и текстуре. Для обучения алгоритма исследователи использовали как настоящие изображения, полученные с помощью камеры, так и множество сгенерированных трехмерных сцен. Возможности технологии демонстрирует одна из сцен, на которой при слабом освещении запечатлен автомобиль черного цвета и человек, рядом с которым установлен вырезанный из картона портрет Альберта Эйнштейна в натуральную величину. Изображения, полученные с помощью обычной камеры, лидара и HADAR затем использовали для определения объектов с помощью алгоритма распознавания изображений. На изображении, полученном с помощью обычной камеры, алгоритм ошибочно распознал двух людей, приняв картонную фигуру за человека. На данных, полученных лидаром, оказалось невозможно определить автомобиль. При этом HADAR смог выделить все составляющие сцены, а также определить, что одна из человеческих фигур имеет сигнатуру краски на поверхности, а вторая покрыта тканью. Созданная технология может значительно улучшить системы автономной навигации беспилотных транспортных средств и роботов, дополнив уже существующие системы или даже заменив их. HADAR позволяет определять объекты и измерять расстояние по данным, полученным в ночное время, так же хорошо, как это делают традиционные системы компьютерного зрения, которые используют данные с камер в условиях дневного освещения. По словам авторов работы, в дальнейшем им предстоит решить проблему высокой стоимости оборудования для гиперспектральной съемки и невысокой производительности алгоритма. Сейчас процесс получения изображений и их обработки занимает минуты, но для работы в режиме реального времени это время необходимо сократить. Ранее мы рассказывали, как физики создали лидар, способный распознать метровые детали с рекордного расстояния в 45 километров в условиях высокого шума и слабого сигнала.