У дрозофил Drosophila melanogaster обнаружили нейроны, которые реагируют на абсолютные значения температуры, а не на ее изменение, сообщается в Current Biology. Сенсоры холода активируются при температуре ниже 25 градусов Цельсия и тормозят работу одной из групп нейронов, регулирующих ритмы сна и бодрствования насекомого. Из-за этого при пониженных температурах дрозофилы дольше спят и менее активны в те часы, когда они обычно бодрствуют. Скорее всего, это позволяет им дождаться более благоприятных условий и при этом сэкономить энергию.
Большинство чувствительных клеток (рецепторных нейронов) реагирует на изменение какого-то параметра — освещенности, температуры, положения тела в пространстве и прочего. Пороги их чувствительности меняются в зависимости от внешних условий. К примеру, если человек залез в ванну с температурой воды +33 градуса Цельсия, сначала он почувствует тепло, а через несколько минут — уже нет, потому что терморецепторы кожи привыкли к этой температуре и перестали активироваться в ответ на нее.
В центральную нервную систему — спинной и головной мозг (в случае беспозвоночных — в различные скопления нервных клеток, ганглии) информация передается обычно не напрямую от рецепторных нейронов, а через несколько звеньев клеток-посредниц, которые перекодируют сигналы, усиливают или ослабляют их, собирают информацию от нескольких групп рецепторов сразу и так далее. Центральные отделы нервной системы вновь обрабатывают эти данные и генерируют команды нейронам, которые управляют работой мышц и внутренних органов. Эти клетки обеспечивают физиологический и поведенческий ответ на условия среды. Такова общая схема, но как конкретно в нервной системе кодируются, к примеру, абсолютная и относительная температура окружающего воздуха и как мозг реагирует на эту информацию, не слишком понятно.
Прояснить нейронные механизмы восприятия температуры и ответов на нее сотрудники американского Северо-Западного университета во главе с Марко Галлио (Marco Gallio) решили на дрозофиле — хорошо изученном насекомом со сравнительно небольшим числом нервных клеток. Температура тела дрозофилы сильно зависит от окружающей среды, как и активность мухи: если резко похолодает, насекомое быстро потеряет способность летать или даже ходить.
Исследователи с помощью методики current clamp, двухфотонной микроскопии и красителей, реагирующих на изменения внутриклеточной концентрации кальция, записывали сигналы, которые генерировали нервные клетки TPN (thermosensory projection neurons) в мозге дрозофил (ганглиях, расположенных в голове насекомого. Они схожи с головным мозгом позвоночных местонахождением, но не механизмом формирования). Эти клетки получают информацию от терморецепторов (TRN, thermosensory receptor neurons) на усиках насекомого. Каким нейронам передают информацию TPN, определяли с помощью иммунофлуоресценции и электрофизиологии.
Параллельно со сбором электрофизиологических данных нейробиологи записывали на видео поведение мух и отмечали, когда те спят, а когда наиболее активны. Сном считали любой период дольше 5 минут, пока дрозофила не двигалась. Температуру в помещении, где находились мухи, во время эксперимента периодически повышали или понижали на 2–5 градусов, но в пределах 17–30 градусов Цельсия. Привычной для насекомых была температура +25, при которой их растили.
Оказалось, что клетки TPN одного из подтипов, TPN-II, активируются только тогда, когда температура вокруг них становится ниже +25 по Цельсию, и чем ниже этого значения, тем сильнее. Информацию они получают от трех типов терморецепторов в усиках мухи. TPN-II не привыкают к холоду, то есть их активность не возвращается к базовым значениям после нескольких минут пребывания насекомого при пониженной температуре. TPN-II посылают тормозные сигналы группе дорсальных (расположенных со спинной стороны головы) клеток DN1a, которые участвуют в регуляции циркадных ритмов — изменении активности животного в зависимости от времени суток.
Когда температура опускается ниже +25, активность DN1a падает (их ингибируют TPN-II), как и активность мухи в целом. Дрозофилы, которые находятся в холодных для них помещениях, дольше спали ночью (хотя световой режим в экспериментах не меняли) и совершали меньше движений в периоды своей максимальной активности — ранним утром и ранним вечером. Дневной сон дрозофил, который в норме приходится на самые жаркие часы, при холодовой активации TPN-II (и снижении активности DN1a) сдвигался ближе к утру. Вероятно, это связано с тем, что в самый холодный период года световой день наиболее короток.
Таким образом, у дрозофилы нашли и описали цепь нейронных связей, которая обеспечивает реакцию организма насекомого на абсолютные значения температуры, которая ниже оптимальной для данного вида. В нее входят терморецепторы на антеннах, а также клетки TPN и DN1a в головном мозге. Вместе они позволяют животному экономить энергию в холодную погоду за счет более продолжительного сна, регулируя его реакцию на изменение освещенности.
Дрозофила — один из наиболее популярных модельных объектов в нейробиологии среди беспозвоночных. Уже составлена полная карта связей нейронов ее головного мозга и получено полное трехмерное изображение этого органа. Нейронные и генетические механизмы различных форм поведения этих мух тоже известны. Например, недавно выяснили, что пережить отвержение самкой самцу дрозофилы помогает нахождение в темноте. В этих условиях неактивен фактор транскрипции CrebB, поэтому запоминание не происходит.
Светлана Ястребова
Исследование провели на личинках дрозофил
Японские исследователи в экспериментах с дрозофилами установили механизм влияния на нейропластичность фермента убиквитинлигазы, функции которого нарушены при синдроме Ангельмана. Как выяснилось, этот фермент в пресинаптических окончаниях аксонов отвечает за деградацию рецепторов к костному морфогенетическому белку, за счет чего устраняются ненужные синапсы в процессе развития нервной ткани. Отчет о работе опубликован в журнале Science. Синдром Ангельмана представляет собой нарушение развития, которое проявляется умственной отсталостью, двигательными нарушениями, эпилепсией, отсутствием речи и характерной внешностью. Его причиной служат врожденные дефекты фермента убиквитинлигазы Е3А (Ube3a), который присоединяет к белкам убиквитин, влияющий на их судьбу в клетке, в том числе деградацию. При синдроме Ангельмана сниженная активность Ube3a нарушает синаптическую пластичность в процессе нейроразвития, в частности элиминацию ненужных синапсов. Повышенная активность этого фермента, напротив, приводит к неустойчивости сформировавшихся синапсов и, как следствие, к расстройствам аутического спектра. Исследования постсинаптических функций Ube3a показали, что он играет роль в нейропластичности, в частности формировании дендритных шипиков. При этом, по данным иммунохимических и электронно-микроскопических исследований, в коре мозга мыши и человека этот фермент экспрессируется преимущественно пресинаптически. Учитывая высокую эволюционную консервативность Ube3a, сотрудники Токийского университета под руководством Кадзуо Эмото (Kazuo Emoto) использовали для изучения его пресинаптических функций сенсорные нейроны IV класса по ветвлению дендритов (C4da) личинок плодовой мухи дрозофилы. Число дендритов этих нейронов резко сокращается (происходит их прунинг) в первые 24 часа после образования куколки, а на последних стадиях ее развития дендриты разветвляются вновь уже по взрослому типу. Используя флуоресцентные метки различных биомаркеров нейронов, исследователи показали, что в ходе этого процесса ремоделированию подвергаются не только дендриты, но и пресинаптические окончания аксонов. Попеременно отключая разные компоненты участвующих в этих процессах молекулярных комплексов, ученые убедились, что для элиминации синапсов под действием сигнального пути гормонов линьки экдизонов необходима только Ube3a, но не куллин-1 E3-лигаза, участвующая в прунинге дендритов. Дальнейшие эксперименты с применением флуоресцентных меток и РНК-интерференции показали, что Ube3a активно транспортируется из тела нейрона в аксон двигательным белком кинезином со средней скоростью 483,8 нанометра в секунду. Создав мутантов с дефектами в различных участках Ube3a, авторы работы выяснили, что связанные с синдромом Ангельмана мутации D313V, V216G и I213T в среднем домене фермента, содержащем тандемные полярные остатки (TPRs), препятствуют его связи с кинезином и транспорту из тела нейрона в аксон. Как следствие, нарушается элиминация ненужных синапсов. Изменения в N-концевом цинк-связывающем домене AZUL и C-концевом HECT влияли на эти процессы в значительно меньшей степени. Ube3a принимает участие в убиквитинировании многих клеточных белков. Чтобы выяснить, какой из них опосредует элиминацию синапсов, авторы работы вызывали в нейронах избыточную экспрессию разных белков-мишеней Ube3a с целью насытить этот фермент и таким образом заблокировать его действие. Оказалось, что выраженные дефекты элиминации синапсов возникают при избыточной экспрессии тиквеина (Tkv) — пресинаптического рецептора к костному морфогенетическому белку (ВМР); прунинг дендритов при этом не затрагивается. Исследование нормальной экспрессии Tkv с помощью флуоресцентных меток показало, что ее уровень значительно снижается через восемь часов после начала формирования куколки. У мутантов, лишенных Ube3a, этого не происходило. Выключение гена tkv или другого компонента сигнального пути BMP — mad — восстанавливало элиминацию синапсов у таких мутантов, то есть за нее отвечает именно этот сигнальный путь. Это подтвердили, восстановив элиминацию синапсов у мутантов без Ube3a антагонистом BMP LDN193189, а также экспрессией белков Glued-DN или Dad, которые подавляют сигнальную активность Mad. Искусственное повышение пресинаптической экспрессии Ube3a в нейронах C4da вызывало массированную преждевременную элиминацию сформировавшихся синапсов и общее уменьшение синаптической передачи у личинок третьего возраста. Это происходило из-за чрезмерного подавления сигнального пути BMP. Таким образом, дефекты убиквитинлигазы Ube3a, лежащие в основе синдрома Ангельмана, приводят к избыточной активности сигнального пути BMP, вследствие чего не происходит устранение ненужных синапсов в процессе развития нервной системы. Этот сигнальный путь может послужить мишенью для разработки новых методов лечения этого синдрома, а возможно и расстройств аутического спектра, считают авторы работы. В 2020 году американские исследователи сообщили, что им удалось предотвратить развитие синдрома Ангельмана у мышей с мутацией материнской копии гена UBE3A. Для этого они с помощью системы CRISPR/Cas9 инактивировали длинную некодирующую РНК UBE3A-ATS, которая подавляет экспрессию отцовской копии UBE3A.