Ученые разработали электрохимический глаз с высокой разрешающей способностью и скоростью отклика. Хрусталик они заменили на линзу, стекловидное тело — на ионный электролит, сетчатку — на светопоглощающий массив нанонитей перовскита, а вместо нейронов использовали жидкометаллические провода из галлия и индия. Такая система успешно распознала буквы I, У, А и Е. Работа опубликована в журнале Nature.
Человеческие глаза за счет вогнутой полусферической сетчатки и светоуправляющих компонентов внутриглазной жидкости обладают широким полем зрения в 150-160 градусов, высоким разрешением в одну угловую минуту (одна шестидесятая градуса), а также хорошей адаптивностью. Исходя из этого, ученые и инженеры заинтересованы в разработке искусственного аналога. Предполагается, что он найдет применение в робототехнике.
В сетчатке человеческого глаза расположены палочки (отвечают за изумрудно-зеленую область спектра и обеспечивают ночное зрение) и колбочки (фиолетово-синяя, зелено-желтая и желто-красная области спектра). Их плотность достигает десяти миллионов на квадратный сантиметр со средним шагом в три микрометра, что и создает такую высокую разрешающую способность. На сегодняшний день инженеры производят доступные сенсоры на основе приборов с зарядовой связью и комплементарных структур металл-оксид-полупроводник, которые в основном используют плоскую архитектуру из-за распространенного процесса получения плоских микросхем. Подобные устройства уже достигли схожей разрешающие способности, но из-за технологической сложности получения устройства в форме полусфер практически не реализуются. Кроме того, в последнее время ученые активно развивали светопоглощающие массивы гибридных перовскитов в качестве фотодетекторов.
Чжиюн Фань (Zhiyong Fan) с коллегами из Гонконгского университета науки и технологии представили искусственную зрительную систему на основе сферических электрохимических глаз с полусферической сетчаткой из плотного массива нанонитей светочувствительного гибридного перовскита. В качестве аналога стекловидного тела они использовали жидкий ионный электролит, а жидкометаллические провода соединяли светочувствительную структуру с выводящими контактами. Такая система показала низкий предел обнаружения и широкое поле зрения. Более того, светочувствительный слой получился более плотным, чем у человеческого глаза, что повышает разрешающую способность зрительной системы.
Ученые получили такой глаз следующим образом. С помощью полусферических пресс-форм они изгибали алюминиевую фольгу с толщиной в полмиллиметра для получения полусферической оболочки, которую затем подвергали анодизации для получения пористого слоя оксида алюминия толщиной в 40 микрометров с заданным размером пор. После этого авторы нанесли свинец на дно пор алюминиевой матрицы методом электроосаждения и затем протравили поверхность для избавления от незаполненной матрицы и оставшегося алюминия. Полученные пленки перенесли в трубчатую печь и подвергал конверсии в нанонити перовскита — йодида свинца формамидиния. Для увеличения адгезии на поверхность пленок напылили слой индия в 20 нанометров.
Контактный массив жидкого металла исследователи обеспечили полидиметилсилоксановой формой в виде ежа (такую форму напечатали на 3D принтере). В мягкие трубки они залили расплав индия и галлия, а затем соединили форму со светочувствительным слоем. Чтобы избежать точечного подключения каждого пикселя нанопроводами напрямую, ученые использовали жидкий металл, который самостоятельно создаст контакт за счет поверхностного натяжения. В передней алюминиевой полусфере глаза авторы работы сделали отверстие, а остальную часть полусферы покрыли вольфрамом, который служит противоэлектродом для электрохимического оптического детектора. Они склеили полусферы между собой с помощью эпоксидного клея, во внутреннюю область залили жидкий ионный электролит бис(трифторметилсульфонил)имид и йодид 1-бутил-3-метилимидазола, а в конце приклеили в отверстие передней полусферы собирающую линзу. Авторы сконструировали прототип с сотней пикселей с разрешением в 1,6 миллиметра из-за толщины жидких проводов, которую сложно уменьшить до нескольких микрометров, однако в будущем они намерены использовать металлические микроиглы микрометрового диаметра.
Массив из нанопроводов перовскита имеет минимальное разрешение в 500 нанометров, что соответствует плотности пикселей в 460 миллионов на квадратный сантиметр, что гораздо больше, чем в человеческой сетчатке, что потенциально можно будет использовать в оптических сенсорах для имитации человеческих глаз, если решить проблему электрического контакта каждого пикселя.
Чтобы проверить качество фотодетектирования, ученые провели серию экспериментов с пикселями. Время отклика и восстановления составило 32 и 40,8 миллисекунд, соответственно. Модифицировав структуру поверхности и увеличив концентрацию ионного электролита, ученые снизили сопротивление контактного перехода и достигли значений в 19,2 и 23,9 миллисекунды, что в два раза быстрее, чем у человеческого глаза (40-150 миллисекунд), но увеличение концентрации ионного электролита приводит к увеличению потерь света при прохождении через более плотный слой, а потому в будущем эту проблему тоже предстоит решить.
Ученые измерили зависимость фототока от мощности падающего излучения в широком промежутке от 0,3 микроватт до 50 милливатт на квадратный сантиметр и обнаружили, что отклик увеличивается с падением мощности излучения. Такая система может достичь фототока в 303,2 миллиампер на ватт, что обгоняет существующие электрохимические фотодетекторы и идет наравне с твердотельными фотодетекторами на основе перовскитных нанонитей. После 64800 циклов работы авторы не заметили потерь характеристик.
Для определения прямой способности глаз к детектированию картинок инженеры провели тест на буквах I, Е, У и А. Полученное изображение — черно-белое, так как в отличие от человеческого глаза в такой системе лишь одно светопоглощающее вещество. В сравнении с плоскими оптическими сенсорами, полусферическая форма электрохимического глаза обеспечивает более равномерное расстояние между пикселями и объективом, в результате чего увеличивается широта поля зрения и улучшается фокусировка на каждом пикселе.
Ученые разрабатывают не только глаза для роботов, но и модернизируют человеческие глаза. Два года назад китайские ученые разработали светочувствительную кожу с возможностью автономного функционирования за счет колебательной энергии моргания. Такое устройство можно напрямую подключить к головному мозгу и использовать в качестве искусственной сетчатки глаза.
Артем Моськин
И летать по заданной траектории
Инженеры разработали прототип миниатюрного орнитоптера под названием Bee++. В воздух он поднимается с помощью четырех крыльев, а его масса составляет 95 миллиграмм. Махолет управляется по тангажу, крену и рысканью и способен летать по заданной траектории. Статья с описанием робопчелы опубликована в журнале IEEE Transactions on Robotics. В последние годы становятся популярными разработки в области миниатюрных беспилотников, которые по размеру сопоставимы с насекомыми. Миниатюризация вынуждает инженеров отходить от ставшей уже классической схемы с воздушными винтами и электромоторами, так как использовать их эффективно в беспилотниках весом меньше грамма невозможно. Вместо этого инженеры используют схему орнитоптеров — летательных аппаратов, у которых подъемная сила создается за счет периодических взмахов крыльями. Для приведения их в движение обычно применяют пьезоэлектрические актуаторы, передающие усилие на крылья через механическую трансмиссию. Несмотря на то, что эта схема доказала свою работоспособность, большинство из созданных сегодня миниатюрных махолетов не имеют стабильного управления по оси рысканья. Эту проблему решили инженеры под руководством Нестора Переса-Арансибии (Nestor Perez-Arancibia) из Университета штата Вашингтон. Они построили миниатюрный орнитоптер, который управляется по всем трем осям. Микроорнитоптер, названный Bee++, представляет собой улучшенную версию орнитоптера, представленную авторами в 2019 году. Так же, как и предшественник, Bee++ имеет четыре машущих крыла, приводимых в действие индивидуальными пьезоэлектрическими актуаторами, а его масса составляет 95 миллиграмм. Сверху и снизу на корпус установлены восемь защитных стержней, которые предотвращают махолет от ударов об окружающие предметы. Питание прототип получает через провода. Несмотря на то, что крылья не имеют механизмов управления углом установки, плоскости их движения имеют заранее определенный наклон. Благодаря этому удается создавать крутящий момент по крену, тангажу и рысканью за счет изменения амплитуды движения пар крыльев. Например, для того чтобы наклонить махолет вперед, амплитуда пары крыльев, расположенных в передней части уменьшается, вследствие чего снижается генерируемая ими тяга. В результате орнитоптер наклоняется заданном направлении. Аналогичным образом происходит управление по оси крена с помощью боковых пар крыльев. Для поворотов по оси рысканья изменяют амплитуду движения пар крыльев, расположенных по диагонали. Набор или снижение высоты происходит при увеличении или снижении частоты взмахов всех четырех крыльев. Инженерам удалось увеличить частоту движений крыльями, что привело к увеличению тяги на 125 процентов по сравнению с предыдущей версией робопчелы, которая могла лишь держаться в воздухе, но не имела достаточной тяги для управления рысканьем. В испытаниях робопчела продемонстрировала хорошую управляемость по оси рысканья и способность разворачиваться на угол 90 градусов за 50 миллисекунд со скоростью около 1800 градусов в секунду, что сравнимо с характеристиками мухи дрозофилы. Также робопчела успешно продемонстрировала способность удерживать положение корпуса по оси рысканья при одновременном перемещении по сложной траектории. По словам разработчиков в будущем в созданную ими платформу можно будет интегрировать сенсоры, которые позволят системе управления робопчелы ориентироваться в пространстве. https://www.youtube.com/watch?v=m9lLO1QpdcE Ранее мы рассказывали об инженерах из США, создающих крупные орнитоптеры, которые внешне похожи на птиц. Для этого они используют чучела настоящих животных. Корпус одного из прототипов покрыт перьями кеклика, а в его передней части находится голова чучела этой птицы, а во втором беспилотнике используются настоящие крылья голубя.