Российские астрофизики провели совместный анализ светимости ядер активных галактик в радиодиапазоне и времени регистраций нейтрино высоких энергий. Оказалось, что эти два явления взаимосвязаны: нейтрино достигали Земли в периоды увеличенной радиояркости квазаров. Авторам удалось определить четыре конкретных источника, в которых с высокой вероятностью рождаются такие нейтрино. Все выделенные квазары обладают яркими джетами, которые ориентированы в сторону Земли, пишут авторы в журнале The Astrophysical Journal.
Нейтрино — это класс легчайших из обладающих массой частиц в Стандартной модели физики микромира. Эти объекты обладают крайне малым сечением взаимодействия с другими частицами, из-за чего их регистрация исключительно трудна даже с учетом высоких потоков. На данный момент всего несколько космических объектов однозначно отождествлены как источники нейтрино, в том числе Солнце, сверхновая 1987A и блазар TXS 0506+056, который стал первым определенным источником нейтрино высокой энергии.
Астрофизики уже давно выдвинули идею о рождении нейтрино высоких энергий в ядрах активных галактик, к которым, в частности, относятся и блазары. В первую очередь это обусловлено подходящими условиями в таких объектах: там возникают мощные магнитные поля и ударные волны, которые способствуют ускорению заряженных частиц, а последующие взаимодействия между ними могут приводить к появлению нейтрино.
Доказать эту гипотезу нелегко, так как фактически первым подходящим детектором нейтрино стал антарктический телескоп IceCube, строительство которого было завершено в 2010 году. Однако и эта огромная установка регистрирует события достаточно редко, а точность восстановления исходных параметров (координат источника и энергий частиц) часто недостаточна для однозначных выводов.
Российские астрофизики из Астрокосмического центра ФИАН, МФТИ и Института ядерных исследований РАН при участии Юрия Ковалева (Yuri Yu. Kovalev) протестировали эту идею статистическим методом, проведя совместный анализ данных о регистрациях нейтрино с энергиями выше 200 тераэлектровольт и яркости активных ядер галактик в радиодиапазоне. Авторы пришли к выводу, что между событиями наблюдается корреляция, причем источниками оказываются ядра активных галактик с временно повышенной яркостью в центре. Из-за малой выборки достоверно определить все источники не удалось, но ученые назвали четырех наиболее вероятных кандидатов — это квазары 3C 279, NRAO 530, PKS 1741−038 и OR 103.
В качестве исходных данных о нейтрино исследователи взяли информацию о регистрациях частиц с энергиями выше 200 ТэВ, направление на источники которых известны с точностью не хуже 10 квадратных градусов, — таких событий в базе данных IceCube оказалось 56 (при этом доля не связанных с астрономическими процессами фоновых событий оценивается как минимум в треть). Этот энергетический порог был выбран, так как имеющиеся данные свидетельствуют в пользу существования двух нейтринных компонент с различными характерными энергиями, причем выше 200 ТэВ одна из них начинает доминировать.
Другим источником информации стали наблюдения активных ядер галактик в радиодиапазоне. Астрофизики смотрели на совпадение координат источников нейтрино с такими объектами, а также использовали архивные данные о светимости ряда таких небесных тел. Первый набор данных, покрывающий все небо, был получен различными системами интерферометров, а второй — российским радиотелескопом РАТАН-600, который наиболее чувствителен в диапазоне склонений −30 до +43 градусов.
Анализ показал, что нейтрино статистически значимо приходят с направлений, где наблюдаются активные ядра галактик, чья центральная яркость в радиодиапазоне оказывается выше, чем у объектов подобного типа в среднем. Случайная вероятность подобного совпадения оказалась равна 0,2 процентам. Также выяснилось, что во время регистраций нейтрино радиоизлучение этих ядер галактик было мощнее, чем в другие наблюдательные эпохи для этих же объектов, то есть они породили высокоэнергетичные частицы в фазе вспышки.
Результаты приближают ученых к разгадке природы космических источников нейтрино, а также позволяют предположить, почему этого не удавалось сделать ранее. Так, одним из активных направлений исследований был поиск корреляций между источниками нейтрино и гамма-квантов. Однако светимость в гамма-диапазоне для выделенных объектов различается на порядки, что указывает на непрозрачность вещества в центре таких тел для гамма-излучения и неэффективности поиска подобной корреляции.
Дополнительную информацию о природе нейтрино высоких энергий астрофизики ожидают получить после полноценного введения в строй новых нейтринных телескопов, таких как Baikal-GVD и KM3NeT, которые смогут точно восстанавливать координаты для большего числа событий. Однако вместе с этим в последнее время по всему миру сворачиваются программы постоянного наблюдения активных ядер галактик отдельными радиотелескопами. Это может осложнить задачу, так как в отсутствии таких наблюдений будет неясно, пришло ли нейтрино во время вспышки активности ядра или нет.
Мы подробно писали о первой регистрации нейтрино сверхвысокой энергии в материале «Ледяное нейтрино». Позже ученые выдвинули идею, что данное событие связано со столкновениями потоков в джете блазара. До этого исследователям впервые удалось определить источник внегалактического нейтрино — им также оказался блазар.
Тимур Кешелава
Его ширина составляет 322 километра
Астрономы оценили альбедо и форму кандидата в карликовую планету 2002 MS4 из Пояса Койпера, а также нашли на нем впадину глубиной 45,1 километра и протяженностью 322 километра — предположительно, это огромный кратер. Это удалось сделать благодаря наблюдениям покрытий объектом звезд Млечного Пути. Препринт работы опубликован на сайте arXiv.org. Покрытия звезд возникают, когда какое-либо близкое к земному наблюдателю тело, такое как астероид, планета или ее спутник, проходят на фоне звезды Млечного Пути, вызывая падение ее яркости или закрывая ее полностью. Это позволяет уточнить размеры и форму тела, его орбиту или выявить наличие колец или других структур. В частности, благодаря покрытиям звезд были открыты кольца у Урана и карликовой планеты Квавар из Пояса Койпера, а также установлена двойственность Аррокота — цели зонда New Horizons. Группа астрономов во главе с Флавией Роммель (Flavia Rommel) из Федерального технологического университета в Бразилии опубликовала результаты программы по наблюдению девяти покрытий звезд кандидатом в карликовую планету в Поясе Койпера (307261) 2002 MS4, проводившейся в период с 2019 по 2022 год при помощи ряда наземных телескопов в Южной и Северной Америке, Африке, Европе и Западной Азии. Объект был обнаружен в рамках программы отслеживания околоземных астероидов в июня 2002 года и классифицируется как представитель горячей популяции классических тел Пояса Койпера. Модель 2002 MS4, лучше всего подходящая под данные наблюдений, обладает большой полуосью 412 километров и малой полуосью 385 километров, а также оценочным геометрическим альбедо 0,1. Исследователи также обнаружили три отчетливых детали рельефа, видимых в северо-восточной части лимба: впадина, глубиной 11 километров, за которой следует возвышенность высотой 25 километров, за которой следует еще одна впадина с глубиной 45,1 километра и линейной протяженностью 322 километра. Предполагается, что если вторая впадина является ударным кратером, то это может быть самый большой кратер на транснептуновых объектах. Однако не исключена полностью модель, где возвышенность объясняется наличием спутника, хотя из данных наблюдений явно не следует присутствие у 2002 MS4 выбросов с поверхности, спутников или колец. Ранее мы рассказывали о том, как самый крупный кратер Аррокота рассказал о его ударном прошлом.