Физики экспериментально обнаружили новое квантовое состояние сверхпроводника, в котором материал становится источником магнитного поля. Достигнутый результат важен как с точки зрения фундаментальной науки, так и для разработки сверхпроводящих устройств. Статья опубликована в журнале Nature Physics.
Сверхпроводимость — это явление, при котором электрическое сопротивление материала становится строго нулевым. Переход образца в такое состояние происходит при охлаждении ниже критической температуры — она определяется свойствами вещества. В настоящее время сверхпроводимость широко применяется в технике, однако полного теоретического описания этого явления ученые до сих пор не разработали (подробнее о сверхпроводимости и существующих объяснениях можно узнать в нашем материале).
Квантовые свойства сверхпроводника делают его идеальным диамагнетиком — материалом, которому энергетически выгодно иметь нулевое внутреннее магнитное поле. В результате сверхпроводимость и магнетизм становятся конкурентами: обычно они проявляются только по отдельности, а для совместного их возникновения нужно поддерживать специальные условия.
Ученые из шести стран под руководством Вадима Гриненко (Vadim Grinenko) из Института физики твердого тела и исследования материалов Ассоциации Лейбница в Дрездене экспериментально изучили сверхпроводимость в кристалле Ba1−xKxFe2As2. Авторы исследовали образцы с различным содержанием примесей калия и бария (в химической формуле их определяет параметр х), и следили за тем, как состав материала влияет на его сверхпроводящие и магнитные особенности. Для анализа этих свойств физики облучали кристаллы поляризованным (то есть обладающим заданной ориентацией магнитных моментов) пучком положительно заряженных мюонов и детектировали частицы, которые рождались при взаимодействии этого пучка с образцом. Такие измерения позволили исследователям понять, как именно материал воздействовал на магнитные моменты частиц, и, таким образом, определить его магнитную структуру.
В результате физики установили, что при достаточно большом относительном содержании калия (x>0.7) и низкой температуре (около 10 К) материал переходит в особое квантовое состояние, в котором начинает генерировать собственное магнитное поле. Таким образом, ученые обнаружили ранее неизвестный механизм сосуществования магнетизма и сверхпроводимости. Это открытие порождает новое направление для экспериментальных и теоретических исследований и в будущем может найти применение при разработке сверхпроводящих устройств. Кроме того, авторы выявили связь между условиями, которые приводили к возникновению обнаруженного состояния, и условиями Лифшиц-перехода — известного квантового превращения, меняющего энергетическую конфигурацию электронов. Последнее облегчит поиски подобных свойств у других кристаллов.
Ранее мы писали о том, как ученые предсказали возникновение сверхпроводимости при температуре 200 градусов Цельсия и как мюоны помогли измерить перепад потенциалов грозового облака величиной в миллиард вольт.
Николай Мартыненко
Для этого физики косо сталкивали восемь плазменных струй
Британские и американские физики создали лабораторный аналог аккреционного диска, который возникает в космосе при падении газа на массивные объекты, например, черные дыры. В новом опыте, в отличие от предыдущих исследований, отсутствовали какие-либо стенки или ограничения для потоков — их закручивание происходило за счет нецентрального столкновения восьми плазменных струй. Плазменное кольцо продемонстрировало стабильность, что позволит в будущем исследовать роль магнитного поля в аккреции вещества. Исследование опубликовано в Physical Review Letters. Аккреционные потоки газа вокруг массивных тел встречаются во Вселенной довольно часто. Свет, испускаемый аккреционным диском, может свидетельствовать в том числе и о существовании черной дыры. Поведение газа, падающего на черную дыру, вызывает у исследователей множество вопросов, ответы на которые они добывают преимущественно теоретически. Лабораторные попытки понять физику аккреционного диска тоже существуют. Для этого физики создают потоки водно-глицериновых растворов или металлических расплавов в магнитном поле. Другой способ основан на подаче электрического тока на края холловской плазмы, удерживаемой постоянными магнитами. Недостатком всех этих методов остается наличие жестких границ, которые отсутствуют в космических процессах и искажают моделирование. Группа физиков под руководством Сергея Лебедева (Sergei Lebedev) из Имперского колледжа Лондона вместе с коллегами из США провели эксперимент, лишенный этого недостатка. Он заключался в косом сталкивании восьми плазменных струй, которые закручивались в кольцо. Их движение при этом напоминало движение вещества в аккреционном диске массивного тела. В эксперименте также образовывались характерные плазменные струи, перпендикулярные плоскости вращения. Установка физиков состояла из алюминиевых проволок толщиной 40 микрометров, расположенных в серединах ребер правильного восьмиугольника. Ученые пропускали через них импульсы большого тока (до 1,4 мегаампера на пике), что приводило к нагреву и абляции вещества. Магнитные поля формировали абляционные потоки и направляли их в середину установки, слегка отклоняя от центра. Столкновение потоков вещества формировало его в кольцо диаметром шесть миллиметров. Оно существовало не более 210 наносекунд, за время которого плазма делала от половины до двух оборотов. Физики следили за ее образованием и развитием в оптическом и экстремально-ультрафиолетовом диапазоне, что позволило исследовать распределение скоростей. Изображения показали, что плазменное кольцо стабильно в течение срока жизни, а само вращение происходит в квазикеплеровском режиме. Авторы также наблюдали плазменную струю, порожденную из вращающегося плазменного столба осевыми градиентами теплового и магнитного давления. Скорость вещества в ней составила 100±20 километров в секунду. Малый угол расходимости — 3±1 градус — свидетельствовал об отсутствии эффектов нестабильности. Струю также окружал плазменный ореол. В будущем авторы планируют продлить время жизни кольца за счет более долгих абляционных импульсов, для чего им потребуется использовать более толстые проволоки. Они убеждены, что замена алюминия на другие материалы позволит контролировать различные параметры магнитнодинамического потока. В будущем это позволит в лаборатории приблизиться к условиям, возникающим в астрофизических процессах, и понять роль нестабильности магнитных полей в аккреции вещества. Аккреционный диск — это не единственное явление, связанное с черными дырами, которое физики пытаются воспроизвести в лабораторных экспериментах. Ранее мы рассказывали, как течение воды в сливе раковины помогает изучать квазисвязанные состояния черных дыр, и как в конденсате Бозе — Эйнштейна подтвердили тепловой спектр излучения Хокинга.