Физикам впервые удалось создать хиральный свет с произвольным угловым моментом при помощи метаповерхности. Ученые показали, что построенная система позволяет создавать свет с рекордно высоким угловым моментом. Работа опубликована в журнале Nature Photonics.
Хиральность — термин, который используют для систем, в которых отсутствует зеркальная симметрия. Часто его применяют в химии для характеристики соединений. Например, химические соединения ароматов лимона и апельсина отличаются только хиральностью, то есть они идентичные с точностью до зеркального отображения.
Физические объекты, такие как свет, тоже обладают хиральностью. В общем случае хиральный свет несет спиновый и орбитальный угловые моменты. Теоретически, эти угловые моменты можно контролировать, что ведет к созданию структурированного света, однако на практике контроль хиральности — сложная, но весьма актуальная задача. Структурированный свет можно использовать для оптического контроля молекул, метрологии и коммуникации.
Группа физиков под руководством профессора Эндрю Форбса (Andrew Forbes) из Университета Витватерсранда создала источник хирального света с очень высоким угловым моментом. Для этого ученые разработали и изготовили метаповерхности, которые представляют собой диэлектрическую среду из оксида титана, нанесенную на подложку из плавленого кремнезема. Такая метаповерхность создает различные азимутальные фазовые задержки для разных компонентов поляризации поля, что ведет к «закручиванию» света.
Источник хирального света состоял из лазера, который преобразовывал инфракрасную основную частоту Nd:YAG в видимый зеленый свет с помощью нелинейного кристалла, и метаповерхности, на которую падал зеленый свет. В результате ученым удалось создать свет с рекордно высоким орбитальным угловым моментом, который не удавалось достичь ранее.
Представленный подход для создания хирального света подходит для многих лазерных архитектур, например, построенная система может быть уменьшена до размеров чипа. Поскольку свет может нести большой угловой момент, это означает, что он может быть передан материи. Таким образом, наносистема на основе метаповерхности может служить микроскопическим оптическим гаечным ключом.
Ранее мы писали о том, как российские физики обнаружили хиральность у квантовых точек, а в 2015 году физики и биологи назвали хиральность в биологических системах универсальным маркером жизни.
Михаил Перельштейн
В ловушку Пауля уместилось 105 ионов кальция
Австрийские физики смогли собрать в ловушке Пауля двумерный ионный кристалл, состоящий из 105 ионов кальция — это самый большой показатель на сегодняшний день. Кристалл был стабилен в течение нескольких секунд, также физикам удалось добиться охлаждения ионов в основное колебательное состояние и доступа к отдельным частицам. В перспективе это позволит существенно расширить квантовые вычисления и квантовые симуляции на ионных массивах. Исследование опубликовано в PRX QUANTUM. Массивы ионов, выстроенные в ловушках — это перспективная система для квантовых вычислений и квантовых симуляций. Ионы хороши тем, что взаимодействуют друг с другом сильно, а также позволяют удерживать себя электрическими и магнитными полями. За счет этого вычислители на ионах можно сделать компактнее. Одна из главный проблем этой технологии — масштабируемость. Рекордные 53 иона были собраны группой Монро еще в 2017 году, и дальнейший рост сталкивается с целым рядом технических трудностей. Их можно было бы преодолеть, собирая двумерные упорядоченные структуры. Такие эксперименты проводились, однако тогда физики не имели доступа к управлению отдельными ионами из-за особенностей удерживающих ловушек. Ситуация изменилась благодаря работе физиков из Инсбрукского университета. Ученые смогли собрать устойчивую двумерную структуру из 105 ионов кальция, удерживаемых монолитной радиочастотной ловушкой Пауля. Им также удалось перевести такой кулоновский кристалл в основное состояние по поперечным колебательным модам, что необходимо для реализации разнообразных протоколов запутывания. Большая трудность, которая встает на пути удержания двумерных массивов паулевой ловушкой — это высокая чувствительность ионов в неточности расположения ее элементов. Для борьбы с этой проблемой, физики использовали монолитный подход, в котором все элементы ловушки остаются частью одного твердого тела, а потому практически не смещаются относительно друг друга. Авторы изготавливали электроды таким образом, чтобы сформировать плоский анизотропный потенциал, из-за чего ионный кристалл принимал эллиптическую форму. Их установка давала лазерным лучам доступ к ионам в широком диапазоне углов, что позволило эффективно проводить манипуляции и визуализацию кристалла. В начале эксперимента физики подвергали лазерной абляции твердотельный кальциевый образец. Они облучали испущенные атомы ионизирующим лучом, после чего ионы попадали в область ловушечных потенциалов, где в течение минуты формировался кристалл. Ученые охлаждали его с помощью метода боковой полосы и метода электромагнитно-индуцированной прозрачности. В качестве кубитов авторы использовали несколько зеемановских подуровней. Для контроля отдельных ионов они фокусировали свет с помощью двухмерного акустооптического дефлектора. Оказалось, что время когерентности в таких кубитах может быть продлено до 370 миллисекунд при том, что сам кулоновский кристалл остается стабильным в течение нескольких секунд даже без лазерного охлаждения. Один из путей масштабирования квантовых вычислений на ионах — использовать кудиты вместо кубитов за счет нескольких уровней. Недавно мы рассказывали, как российские физики объединили два кукварта на основе ионов кальция и продемонстрировали на них универсальный набор квантовых операций.