Исследователи обнаружили у коронавирусов черты, позволяющие предсказать их опасность в случае «перепрыгивания» с основного хозяина на человека. Геномы малоопасных штаммов и их родственников отличаются от семьи SARS и MERS в 11 участках, шесть из которых расположены в последовательностях генов S- и N-белков. Препринт работы выложен сайте biorxiv.org.
На сегодняшний день известно семь штаммов заразных для человека коронавирусов. Четыре из них имеют ограниченный район распространения и относительно безобидны, а три остальных — SARS-CoV, SARS-CoV-2 и MERS — спровоцировали вспышки разного масштаба с массовыми смертельными исходами. Исследователи сравнили геномы этих вирусов и выяснили какие участки важны для высокой патогенности вируса. Этот вопрос неоднократно поднимался: мы уже знаем какие особенности выделяют геном SARS-CoV-2 среди других коронавирусов (для этого его геном сравнили со всеми остальными) и какие именно последовательности важны для перепрыгивания SARS и MERS с животных на человека (для этого сравнивают геномы вирусов поражающих человека и их ближайших родственников в животных).
Новая работа предлагает взглянуть на те же данные под другим углом. SARS, MERS и родственные им вирусы животных образуют отдельную семью, и группа исследователей под руководством Евгения Кунина (Evgene Koonin) из NCBI выяснили, чем эта семья отличается от других, неспособных вызывать столь опасных болезней.
В анализ попал 3001 геном, 944 из которых принадлежат семи патогенным для человека штаммам. Все они были выравнены между собой, а затем при помощи SVM в данных искали ключевые участки ДНК, по которым можно было бы предсказать опасность вируса для человека. Всего нашлось 11 участков, 6 из которых пришлось на гены S-белка и белка нуклеокапсида (N-белок), — основы для упаковки РНК вируса.
У вирусов из группы SARS и MERS в N-белке произошли изменения в участках, необходимых для импорта и экспорта в ядро клетки. Сигнальные последовательности, по которым ферменты узнают, где должен находиться белок, и переносят его туда, стали заметнее в этой группе штаммов. Это значит, что, по-видимому, правильная локализация этого белка играет важную роль в развитии патогенности.
К уникальным характеристикам S-белка SARS-CoV-2 относятся последовательности места разреза этого белка и участка, которым он узнает человеческий рецептор ACE2. Если же посмотреть на всю его опасную семью, то окажется, что у ее членов на участке, узнающем ACE2, дополнительно есть небольшая вставка в геном, и еще две в другом домене, который необходим для того, чтобы вирус мог поближе «подтянуться» к мембране клетки. Интересно, что в случаях MERS и SARS они произошли независимо, — это видно по тому, что сами последовательности вставки у них разные. Несмотря на это, авторы предполагают что в обоих случаях вставки на участке узнавания рецептора ACE2 добавили вирусу гибкости, облегчив ему последующую смену хозяев.
За актуальными исследованиями и последними новостями о коронавирусе SARS-CoV-2 можно подробно следить в отдельной теме «Коронавирусные хроники».
Вера Мухина
Это облегчило симптомы поражения мышц и нервов
Выращивание дрозофил с дефектом первого комплекса дыхательной цепи в среде с комбинацией 5-аминолевулиновой кислоты, гидрохлорида и железа натрия цитрата (5-ALA-HCl + SFC) увеличивает выработку АТФ за счет повышения активности второго и четвертого дыхательных комплексов. Активность первого комплекса при этом не меняется. Кроме того, у дрозофил снижалось накопление лактата и пирувата, которое происходит при дефекте первого комплекса, что, по-видимому, облегчало симптомы поражения мышц и нервов. Исследование опубликовано в Human Molecular Genetics. В митохондриях происходит окислительное фосфорилирование — многоэтапный процесс, в ходе которого окисляются восстановительные эквиваленты — восстановленные никотинамидадениндинуклеотид (НАДН) и флавинадениндинуклеотид (ФАДН2), — и вырабатывается АТФ. Происходит последовательный перенос электронов по дыхательной цепи — группе дыхательных ферментов в мембране митохондрии. Всего в цепи участвует пять комплексов дыхательных ферментов. Нарушение переноса электронов по дыхательной цепи сопровождается снижением выработки АТФ и вызывает митохондриальные заболевания. Наиболее часто «ломается» первый комплекс — НАДН-КоQ-оксидоредуктаза, или НАДН-дегидрогеназа. Его дефицит поражает органы и ткани с высокими энергетическими потребностями, таких как мозг, сердце, печень и скелетные мышцы. Обычно это проявляется тяжелыми неврологическими синдромами: например, наследственная оптическая нейропатия Лебера, синдром MELAS или синдром MERRF. Хотя первый комплекс отвечает за поступление наибольшего количества электронов в дыхательную цепь, второй комплекс — ФАД-зависимые дегидрогеназы, — работая параллельно с первым, также отвечает за вход электронов в цепь, передавая их, как и первый комплекс на убихинон (коэнзим Q). Потенциально повышение активности второго комплекса могло бы нивелировать снижение активности первого. Поскольку второй, третий и четвертый дыхательные комплексы и цитохром с содержат гемовые структуры, команда ученых под руководством Канаэ Андо (Kanae Ando) из Токийского столичного университета решили проверить, насколько эффективно будет применение предшественника гема 5-аминолевулиновой кислоты для повышения активности этих комплексов и восстановления синтеза АТФ у дрозофил с дефектом первого комплекса. Сначала ученые отключили у дрозофил ген, гомологичный NDUFAF6 и ответственный за экспрессию одного из регуляторных белков первого комплекса. У таких дрозофил мышцы были тоньше, хрупче и иннервировались хуже, чем у насекомых без нокдауна гена. Кроме того, самцы с неработающим геном погибали намного быстрее самок, и у них развивались более грубые нарушения опорно-двигательного аппарата. Затем ученые проанализировали как нокдаун гена первого комплекса влияет на экспрессию и активность других комплексов. Выяснилось, что нокдаун увеличивает экспрессию генов третьего и пятого комплексов, и снижает — четвертого. При этом активность второго и четвертого комплекса значительно повышалась после нокдауна у самок дрозофил. Ученые не обнаружили нарушений в процессах утилизации активных форм кислорода, однако у дрозофил обоих полов без работающего гена первого комплекса накапливался лактат и пируват. Чтобы проверить влияние комплекса 5-аминолевулиновой кислоты, гидрохлорида и железа натрия цитрата (5-ALA-HCl + SFC) на митохондрии дрозофил с нокаутированным геном, их выращивали в среде, содержащей этот комплекс. Такое воздействие значительно повышало уровни АТФ у самцов и самок дрозофил, при этом количество копий митохондриальной ДНК не изменялось, то есть препарат не увеличивал количество митохондрий. Экспрессия и активность дефектного первого комплекса никак не изменились, а активность второго и четвертого комплексов выросли у самцов. В целом, повышенная экспрессия генов третьего комплекса и активность второго и четвертого комплексов смягчали дефектные фенотипы. Помимо этого 5-ALA-HCl + SFC снижало накопление лактата и пирувата у самцов и самок с нокдауном гена первого комплекса, что потенциально смягчает метаболические нарушения, вызванные дефицитом первого комплекса. У самцов и самок мух-дрозофил, которых лечили 5-ALA-HCl + SFC, наблюдалось меньше дефектов опорно-двигательного аппарата, а продолжительность их жизни значительно увеличилась. Ученые рассчитывают проверить эффект такого лечения на животных с более сложным строением, чтобы подтвердить универсальность такого подхода к лечению митохондриальных нарушений. Не всегда нужна мутация, чтобы нарушить работу дыхательной цепи. Недавно мы рассказывали про то, что большое количество натрия из потребляемой соли нарушает дыхательную цепь митохондрий в регуляторных Т-лимфоцитах. Это приводит к активации аутоиммунных процессов.