Кальмары Гумбольдта (Dosidicus gigas) обладают сложной системой биолюминесцентных сигналов, хотя большую часть жизни проводят в темноте, сообщается в Proceedings of the National Academy of Sciences. Свои намерения (например, о том, что они собираются охотиться) кальмары способны выражать целыми последовательностями сигналов.
Когда уровень освещенности высок, животные могут быстро и эффективно обмениваться информацией в виде зрительных сигналов. Однако в океане на большой глубине света фактически нет, поэтому визуальная коммуникация вряд ли играет большую роль для видов, которые там обитают.
Вероятное исключение — кальмары. У тех их видов, которые живут на сравнительно небольшой глубине, есть довольно сложные системы зрительных сигналов. И эти кальмары, и глубоководные бывают склонны к каннибализму, поэтому им надо быстро выявлять присутствие других особей. Наконец, многие моллюски этого отряда социальны и способны координировать свои действия, находясь в больших группах родственников. Учитывая все это, можно предположить, что и у видов, обитающих на значительной глубине, тоже есть развитые системы зрительной коммуникации — но они пока практически не изучены.
Бенджамин Берфорд (Benjamin P. Burford) из Морской станции Хопкинса Стэнфордского университета и Брюс Робисон (Bruce H. Robison) из Исследовательского института Аквариума залива Монтерей в полевых условиях изучили поведение кальмаров Гумбольдта. Это крупные хищные глубоководные моллюски, которые держатся группами. Известно, что во время охоты они люминесцируют красным, но это далеко не единственный зрительный сигнал в репертуаре этих кальмаров.
Целью исследователей было связать различные сигналы моллюсков с определенными формами поведения и вписать их в экологический контекст. Для этого они снимали на видео поведение Dosidicus gigas с 2005 по 2012 год. Камерами управляли дистанционно, поэтому кальмары не боялись их и охотились, не уплывая далеко.
Из всех записей отобрали 30 наиболее качественных, на которых было различное число кальмаров и хотя бы один из них был целиком виден в кадре по меньшей мере 14 секунд. На каждой записи выбирали одну такую особь и анализировали, что она делает в этот период, как окрашены разные части ее тела, сколько особей того же вида ее окружают.
Оказалось, что поведение кальмаров Гумбольдта зависит в большей степени от световых (биолюминесцентных) демонстраций соседних моллюсков, чем от их поз. Находясь в больших группах, D. gigas чаще всего «вспыхивают» (интенсивность люминесценции резко повышается) или «мерцают» всем телом.
Всего ученые распознали у этих кальмаров 28 типов световых сигналов, 13 из которых моллюски использовали во время поедания добычи (обычно это происходит днем) и находясь среди сородичей: вероятно, кальмары Гумбольдта пользуются биолюминесценцией, чтобы сообщать им различную информацию.
Также исследователи обнаружили, что моллюски выдают последовательности световых сигналов и поз, а не отдельные не связанные между собой сигналы. Например, при преследовании добычи кальмар чаще всего сначала становится темно-красным, потом одна половина его тела светлеет. Непосредственно в момент поимки он темнеет снова, а затем весь быстро светлеет. Это, считают исследователи, выражение намерения — сообщение другим особям того же вида, что сейчас кальмар начнет охотиться.
Авторы изучили строение люминесцентных органов у D. gigas, живущих в неволе, и предложили механизм смены цвета, благодаря которому их визуальные сигналы хорошо различимы для других особей. Этот вид имеет фотофоры (органы люминесценции) двух типов. Одни находятся ближе к поверхности тела — в коже. Они крупные, но их свет направлен внутрь — на мускулы, где находятся более мелкие фотофоры (особенно их плотность велика под теми участками, что активно демонстрируются во время охоты). Они создают подсветку, которая, вероятно, повышает заметность сигналов от кожных источников света. У многих других кальмаров интенсивность биолюминесценции регулируется кожными фотофорами по отдельности, и их свечение направлено наружу, а не на мышцы.
Кальмар Гумбольдта — первое глубоководное животное, у которого обнаружена столь сложная система зрительных сигналов. Пока не понятно, есть ли ее аналоги у других кальмаров со сходной экологией: самих представителей этого вида плохо получается разводить в неволе, а ряд других не обладает способностью к люминесценции. Однако авторы статьи предполагают, что конкретно D. gigas и в целом всему подсемейству, в которое он входит, сложный «световой язык» позволил стать высокосоциальными животными в глубоких водах океана.
Биолюминесценция помогает головоногим моллюскам не только общаться между собой, но и оставаться незаметными для хищников. У кальмара Galiteuthis phyllura есть фотофоры, используемые специально для маскировки глаз, которые нельзя сделать по-настоящему прозрачными. Эти органы всегда направлены так, чтобы животное нельзя было заметить снизу.
Светлана Ястребова
Это произойдет из-за утраты местообитаний, если не снизить антропогенное воздействие
Если не ограничить антропогенные выбросы парниковых газов, то при текущих тенденциях землепользования и распределения населения в Европе к 2061–2080 годам 76 процентов видов шмелей лишится 30 процентов площади своих местообитаний. Это поставит их под угрозу вымирания. Такие выводы содержит статья, опубликованная в журнале Nature. В мире более 90 процентов дикорастущих растений и более 75 процентов сельскохозяйственных культур опыляют насекомыми-опылителями. В последние десятилетия их популяциям угрожает потепление климата, загрязнение воздуха, некорректное применение пестицидов, неустойчивое землепользование и ряд других проблем, из-за которых их численность снижается во всем мире. В умеренных и высоких широтах северного полушария главными насекомыми-опылителями выступают шмели, организм которых адаптирован к холодным условиям. Согласно некоторым национальным отчетам (например, бельгийскому и нидерландскому), в Европе уже наблюдается локальное вымирание до четверти видов шмелей. Ученые под руководством Гийома Гисбена (Guillaume Ghisbain) из Брюссельского свободного университета смоделировали, как изменится численность шмелей разных видов в Европе в течение XXI века, используя наборы данных о климате, землепользовании и населении из проекта ISIMIP2b и обучая модели экологических ниш на данных о присутствии и численности шмелей с географической привязкой. Они использовали три сценария социоэкономического развития (SSP 1-2.6; SSP 3-6.0 и SSP 5-8.5), предполагающие низкие, умеренные или высокие антропогенные выбросы парниковых газов соответственно. Авторы исследования пришли к выводу, что даже при существенном ограничении антропогенных выбросов парниковых газов к 2061–2080 годам 32 процента видов шмелей, внесенных МСОП в список «вызывающих наименьшее опасение», потеряют не менее 30 процентов площадей пригодных для их жизни местообитаний. Если же не ограничить эти выбросы, то с потерей почти трети местообитаний столкнется уже 76 процентов видов европейских шмелей. Таким образом, эти виды шмелей окажутся в категории «находящиеся под угрозой исчезновения». Сильнее всего пострадают местообитания шмелей в Бельгии, Германии, северной Франции и Нидерландах, но в целом вся территория Европы ниже 60 градуса северной широты рискует стать малопригодной для обитания шмелей. Рефугиумом для некоторых видов шмелей может стать Фенноскандия, если на ее территории не усилится действие каких-либо неучтенных антропогенных факторов. Подробнее о причинах и последствиях кризиса насекомых-опылителей в биосфере можно прочитать в нашем материале «Проблема жъжъь».