Американские и итальянские ученые исследовали механизм перераспределения энергии светособирающим комплексом в искусственной мембране, аналогичный процессам, которые происходят в клетках зеленых растений. Оказалось, что процесс проходит по двум путям, один из которых ранее уже предполагали, но экспериментально подтвердили впервые. Результаты исследования опубликованы в Nature Communications.
В зеленых растениях переход солнечной энергии в энергию образования химических связей происходит посредством сложной цепочки реакций. В нее входит сеть белков-антенн: светособирающих комплексов в мембране, которые поглощают свет и направляют его в реакционный центр, где образуется разность зарядов, которая запускает реакцию фотосинтеза. Сеть белков также умеет приспосабливаться к меняющимся условиям освещения, чтобы предотвратить образование вредных продуктов фотохимических реакций вроде радикалов.
Когда света слишком много, система настраивается так, чтобы рассеивать избыток энергии, преобразуя его в тепло. Этот процесс называют нефотохимическим тушением. В каждом светособирающем комплексе происходит ряд фотофизических процессов, проходящих по путям передачи, перераспределения энергии и образования вредных молекул. С изменением конформации белков (взаимного расположения атомов молекулы в пространстве) меняются протяженность и эффективность этих трех процессов. С учетом того, что в фотосинтезе участвует целая сеть таких комплексов, определить баланс между передачей энергии и ее перераспределением, а также их механизмы — сложная задача.
Антенны соединяют сеть основных (хлорофиллов) и вспомогательных (каротиноидов) светопреобразующих пигментов в растении, электронное взаимодействие между которыми обеспечивает быструю и эффективную передачу энергии, которая идет на инициирование химических реакций и перераспределяется.
В зеленых растениях основной антенной является так называемый светособирающий комплекс II (CCКII), фотофизику которого изучали достаточно много. Предполагается, что с изменением конформации комплекс переходит в состояние перераспределения энергии. Изучать такие конформационные изменения очень сложно, так как на взаимное положение атомов влияет среда, в которой находится соединение. Определить фотофизические пути превращения энергии в отдельных антеннах невозможно, а попытки воздействовать на систему лазерным излучением приводили к возникновению мешающих артефактов.
Мин-Юнг Сон (Minjung Son) с коллегами из Массачусетского технологического института с помощью очень чувствительной сверхбыстрой шикрокополосной двумерной электронной спектроскопии изучили фотофизические процессы CCКII в мембранном диске (нанодиске). Нужный белок исследователи поместили в диск из двойного липидного слоя, имитирующий среду, в которой он находится в природе, но вне связи с белковой сетью.
Эксперименты позволили авторам охарактеризовать два пути распределения энергии. Один из них, субпикосекундный переход энергии от хлорофиллов в основном состоянии к каротиноидам в первом возбужденном состоянии, ученым удалось впервые подтвердить экспериментально. В зависимости от среды, в которой находился комплекс (мембране или детергенте), доминировали разные процессы.
По словам авторов, новые данные позволят лучше понять роль механизмов перераспределения энергии в фотопротекции. Распределение энергии усиливается в мембране скорее всего за счет увеличения заселения уровней погашенной конформации. Это в свою очередь свидетельствует об определяющем влиянии среды на конформацию и динамику процессов, а следовательно, и на функцию, которую выполняет аппарат фотосинтеза зеленых растений: преобразование или перераспределение энергии.
Три года назад итальянским ученым удалось искусственно воссоздать фотосинтетический аппарат пурпурных бактерий, помещенный в билипидный слой искусственной протоклетки.
Превращение солнечной энергии в природе, оказывается, может происходить не только в растениях и бактериях. В прошлом году ученые обнаружили возникновение электрического тока в неорганических системах.
Алина Кротова
Это первое соединение с ковалентной связью бериллий-бериллий
Химики из Великобритании разработали способ синтеза дибериллоцена — сэндвичевого соединения бериллия (I), в котором два атома металла связаны друг с другом и с двумя циклопентадиенильными кольцами — из бериллоцена. Полученное соединение оказалось устойчивым в растворе при нагревании. Исследование опубликовано в Science. Соединения бериллия изучены меньше, чем соединения всех остальных нерадиоактивных элементов. Это связано с токсичностью самого бериллия и его соединений: например, полулетальная доза фторида бериллия при оральном введении составляет 18 миллиграмм на килограмм массы в расчете на металлический бериллий (исследования проводились на мышах). Причем токсичны не только соли бериллия, но и сам металл — при вдыхании его мелкой пыли можно заболеть бериллиозом. Особенно плохо изучены металлоорганические соединения бериллия, в которых есть связь металл-углерод. А кластерных металлоорганических соединений, в которых есть ковалентная связь бериллий-бериллий, неизвестно вообще. И хотя квантовые химики давно предсказывали устойчивость таких соединений — например, дибериллоцена — получать их химикам-синтетикам не удавалось до сих пор. Но недавно с этой задачей справились химики под руководством Саймона Олдриджа (Simon Aldridge) из Оксфордского университета. Они выяснили, что если смешать бериллоцен — он состоит из молекул, в которых один атом бериллия связан c двумя циклопентадиенильными кольцами — с димерным комплексов магния (I) в толуоле, при комнатной температуре образуется два вещества. Одно из них — циклопентадиеновый комплекс магния, а второе — дибериллоцен, в котором два атома бериллия связаны друг с другом ковалентной связью, а над каждым атомом металла находится циклопентадиенильное кольцо. Чтобы подтвердить структуру полученного соединения, химики вырастили его монокристалл и провели рентгеноструктурный анализ. В результате выяснилось, что два циклопентадиенильных кольца располагаются симметрично относительно друг друга, а длина связи бериллий-бериллий составляет около 2.05 ангстрема — такую же длину связи предсказывали ранее квантовые химики. А с помощью ЯМР-спектроскопии и ИК-спектроскопии химики показали, что между атомами бериллия нет мостиковых гидридных лигандов (их трудно детектировать с помощью рентгеновской дифракции). Далее ученые провели с дибериллоценом несколько реакций. Сначала они нагрели раствор дибериллоцена в толуоле до 80 градусов Цельсия и выдержали этот раствор при такой температуре 48 часов. Признаков разложения дибериллоцена химики не наблюдали — он оказался устойчивым к нагреванию веществом. Также ученые смешивали дибериллоцен с комплексами алюминия (III) и цинка (II) — в результате получились соединения со связью бериллий-металл. Так химики выяснили, что атомы бериллия в дибериллоцене имеют нуклеофильный характер и могут взаимодействовать с электрофильными частицами. Таким образом, химики получили и подробно охарактеризовали дибериллоцен и исследовали его реакционную способность. В будущем из дибериллоцена можно будет получать новые классы соединений бериллия. Ранее мы рассказывали о том, как химики получили полностью неорганический аналог ферроцена с двумя циклическими фосфорными лигандами.