Физики из Бразилии и США создали устройство на основе акустической левитации для переноса маленьких объектов. Благодаря тому, что контролируемый предмет левитирует на расстоянии нескольких микрон от генератора, устройство не может повредить или загрязнить объект. Это первый программируемый станок, способный перемещать объекты с помощью эффекта притягивающей левитации. Работа опубликована в Applied Physics Letters.
Контролируемое перемещение объектов малого размера имеет решающее значение в микроэлектронике, физике и биологии. В то время как в контроле больших объектов главную роль играет гравитация, манипулирование маленькими компонентами зачастую происходит поверхностными силами — например, электростатическими или ван-дер-ваальсовыми. Однако, поверхностные силы вызывают нежелательное сцепление контролируемых объектов с манипулятором, что может привести к загрязнению или повреждению хрупких деталей.
Для того, чтобы избежать этих проблем, группа физиков из Бразилии и США под руководством Асьера Марсо (Asier Marzo) построила станок для перемещения миллиметровых деталей, который работает на основе эффекта притягивающей ультразвуковой акустической левитации. Такой метод, в отличие от магнитных, оптических и аэродинамических способов бесконтактного контроля, позволяет манипулировать широким спектром материалов, включая твердые тела, жидкости и даже живые существа.
Исследователи построили компьютерную модель, которая помогла определить необходимые параметры генератора ультразвука для создания манипулятора. Для этого физики рассчитали давление акустического излучения, а из него силу, которая действует на контролируемый объект. Физики выяснили, что при разном отношении размера генератора R к длине звуковой волны λ возникающая сила может как отталкивать объект, так и притягивать. Притягивающая сила возникает из-за того, что давление излучения положительно в центральной области объекта и отрицательно на краях, а отталкивающая — наоборот. Выбрав R/λ=0,3, исследователям удалось достичь максимального эффекта притяжения.
Устройство, разработанное физиками, генерирует волны на частоте 21 килогерц для создания удерживающей силы в 0,15 миллиньютон — в результате объект постоянно находится на расстоянии в несколько микрон от генератора. Это первый раз, когда ученым удалось экспериментально продемонстрировать достаточно сильные эффекты притяжения при создании притягивающей акустической левитации.
Построенный станок с ЧПУ может захватывать и перемещать очень хрупкие объекты размером от нескольких микрон до нескольких сантиметров, такие как электромеханические устройства, кремниевые матрицы, микрооптические устройства и так далее.
Ранее мы писали о бесконтактном паяльном аппарате на основе ультразвуковой левитации, в сочетании с этим устройством у инженеров появится возможность собирать микросхемы вообще не касаясь деталей. В 2019 году на основе акустической левитации физики создали псевдоголографический дисплей и продемонстрировали объемный экран с тактильным откликом.
Михаил Перельштейн
При каждом нажатии он меняет структуру, не забывая о предыдущих изменениях
Физики создали механический метаматериал с эффектом памяти, который можно использовать как примитивный счетчик до десяти. Этот материал представляет собой массив из десяти деформируемых ячеек, каждая из которых может находиться в одном из двух состояний, меняющихся при нажатии. При этом предыдущих изменений материал не забывает. В будущем счетчики с подобной конструкцией могут оказаться полезными для мягкой робототехники и умных сенсоров, пишут ученые в Physical Review Letters. Свойства метаматериалов определяются в первую очередь не химическим строением, а геометрической микроструктурой (например, расположением слоев различных веществ или периодичностью атомной решетки) и для них характерны аномальные значения различных физических параметров. Например, если растягивать в продольном направлении ауксетики, обладающие отрицательным значения коэффициента Пуассона, то в перпендикулярном направлении они расширяются (в то время как обычные материалы сжимаются). Ученые работают и над метаматериалами, обладающими памятью: они запоминают воздействие и реагируют на него сменой физических свойств. Например, если нагреть полимер с памятью формы, он вернет исходную (до деформации) форму. Однако такие материалы запоминают лишь начальное состояние, запомнить несколько последовательно меняющихся состояний им не под силу. Физики Мартин ван Хеке (Martin van Hecke) и Леннард Квакернак (Lennard Kwakernaak) из Лейденского университета разработали метаматериал, у которого память о предыдущих деформациях не сбрасывается. Храня информацию о предыдущих воздействиях, такой материал фактически способен считать: он запоминает каждое нажатие, последовательно меняя свою структуру. Ученые сделали материал на 3D-принтере из стоматологической силиконовой смеси для слепков. Он состоит из отдельных ячеек, каждая из которых включает в себя две балки: одну тонкую и одну толстую. Тонкая балка может изгибаться либо влево, либо вправо. Толстая балка служит перегородкой, отделяя ячейки материала друг от друга. Значение критической деформации для толстой и тонкой балок различны, поэтому одного нажатия достаточно для сгибания тонкой балки и частичной деформации толстой. Наличие толстой балки также не дает деформироваться тонкой балке в соседней ячейке. Материал считает следующим образом. В начальном состоянии {000...0} все тонкие балки изогнуты влево. При каждом изменении направления изгиба тонкой балки 0 меняется на 1. Превышая первым нажатием критическую деформацию тонкой балки, систему выводят в состояние {100...0}. После каждого следующего нажатия крайняя слева балка изгибается в правую сторону. Толстая балка при этом не деформируется, но за счет конструкции сгибает следующую тонкую. То есть система копирует состояние изогнутой вправо тонкой балки (1) с каждым нажатием на одну ячейку правее. В терминах нулей и единиц, подсчет можно записать как {000...0} → {100...0} → {110...0}→··· → {111...1}. До скольки может досчитать материал, зависит от числа ячеек и начального состояния системы, память метаматериала сохраняется до конца подсчета. По словам авторов работы, такой метаматериал с эффектом памяти фактически представляет собой простейший компьютер, который можно запрограммировать на счет с любого начального числа. Его работу ученые проверили, фиксируя значения критических деформаций и начиная счет с различных начальных чисел. Материаловеды отмечают, что такой счетчик из метаматериала можно изготовить и из других веществ, например каучука или полиуретана. В будущем из аналогичных ячеек ученые планируют собирать и двумерные массивы, на которых можно будет проводить более сложные вычислительные операции Метаматериалы хороши не только в счете: они помогают решать уравнения со скоростью света, а еще их можно превратить в непрерывные кристаллы времени.