Ученые доказали работоспособность нового метода поиска высокоэнергетических частиц, который основан на генерации радиоволнового эха от ионизационного следа, возникающего при движении частицы в среде. Такой способ может пригодиться для поиска нейтрино в диапазоне энергий, недоступном для других экспериментов, пишут авторы в статье, принятой к публикации в Physical Review Letters.
С Землей постоянно сталкиваются разнообразные частицы из огромного диапазона энергий — все вместе они называются космическими лучами. Одним из основных источников космических лучей оказывается Солнце, но при переходе к высоким энергиям его вклад постепенно исчезает, а роль галактических и внегалактических объектов увеличивается.
Одним из изучаемых в составе космических лучей типов частиц является нейтрино — чрезвычайно маломассивные частицы, которые очень слабо взаимодействуют с веществом. Существует несколько способов регистрации этих частиц, но они ограничены по чувствительности определенными диапазонами энергий.
Крупнейший эксперимент по поиску нейтрино на данный момент — это детектор IceCube на Южном полюсе. Эта установка регистрирует черенковское излучение льда от заряженных частиц, порожденных столкновением нейтрино с атомными ядрами. Таким методом можно фиксировать частицы до 10 петаэлектронвольт (1016 эВ), потому что более энергичные частицы порождают свечение, которое поглощается во льду на расстоянии порядка 200 метров, что ставит верхний предел на эффективный размер детектора.
С другой стороны, можно регистрировать когерентные радиоволны, излучаемые каскадами заряженных частиц, которые порождаются нейтрино. Этот эффект, впервые описанный советским физиком Гургеном Аскарьяном, лежит в основе эксперимента ANITA, который с аэростата фиксирует радиоизлучение от провзаимодействовавших с антарктическим льдом нейтрино. Однако интенсивность электромагнитных волн зависит от исходной энергии частицы, из-за чего уверенная регистрация начинается лишь для нейтрино с энергиями от 100 петаэлектронвольт.
Физики из США, Бельгии и Тайваня при участии Стивена Прохира (Steven Prohira) из Университета штата Огайо продемонстрировали реализуемость нового метода, который заключается в активном зондировании детектора радиоволнами. Так как каскад частиц будет двигаться с локальным превышением скорости света в веществе, то он будет эффективно ионизовать материал, то есть приводить к появлению свободных электронов, которые могут стать самостоятельными источниками электромагнитных колебаний, если их облучить радиоволнами. Ключевым преимуществом способа оказывается очень слабая зависимость от начальной энергии частицы.
Эта группа ученых не первый раз пытается реализовать задумку, но предыдущие попытки измерений радиоэха в воздухе не были результативными. На этот раз ученые изготовили пластиковую мишень длиной в четыре метра, которая играет роль участка льда. В нее направлялся сгусток примерно из миллиарда электронов с энергиями около 1010 электронвольт каждый, что примерно соответствует нейтрино с энергиями порядка 1019 электронвольт.
Авторам удалось зафиксировать искомый радиосигнал, длительность которого составила порядка 10 наносекунд. Его параметры оказались в хорошем согласии с результатами моделирования, а его интенсивность позволила надежно выделить его из шумов на уровне значимости выше пяти стандартных отклонений.
Теперь ученые планируют провести полноценные испытания метода в Антарктиде. Они оценивают стоимость создания полноценной обсерватории на данном принципе в несколько миллионов долларов США, что весьма мало по сравнению с примерно 300 миллионами, вложенными в IceCube. Также исследователи отмечают, что радиоэхо — это единственный предложенный метод с пиковой чувствительностью именно в диапазоне 10–100 петаэлектронвольт, что позволит ему удачно дополнить существующие эксперименты.
Недавно Япония одобрила строительство нового детектора нейтрино, который станет одним из крупнейших в мире. Ранее другой детектор нейтрино, Borexino, подвел итоги наблюдения за возникающими в толще Земли частицами. Единственным найденным внегалактическим источником нейтрино остается блазар TXS 0506+056, у которого нашли особенности джета, которые могут быть связаны с генерацией частиц.
Тимур Кешелава
В ловушку Пауля уместилось 105 ионов кальция
Австрийские физики смогли собрать в ловушке Пауля двумерный ионный кристалл, состоящий из 105 ионов кальция — это самый большой показатель на сегодняшний день. Кристалл был стабилен в течение нескольких секунд, также физикам удалось добиться охлаждения ионов в основное колебательное состояние и доступа к отдельным частицам. В перспективе это позволит существенно расширить квантовые вычисления и квантовые симуляции на ионных массивах. Исследование опубликовано в PRX QUANTUM. Массивы ионов, выстроенные в ловушках — это перспективная система для квантовых вычислений и квантовых симуляций. Ионы хороши тем, что взаимодействуют друг с другом сильно, а также позволяют удерживать себя электрическими и магнитными полями. За счет этого вычислители на ионах можно сделать компактнее. Одна из главный проблем этой технологии — масштабируемость. Рекордные 53 иона были собраны группой Монро еще в 2017 году, и дальнейший рост сталкивается с целым рядом технических трудностей. Их можно было бы преодолеть, собирая двумерные упорядоченные структуры. Такие эксперименты проводились, однако тогда физики не имели доступа к управлению отдельными ионами из-за особенностей удерживающих ловушек. Ситуация изменилась благодаря работе физиков из Инсбрукского университета. Ученые смогли собрать устойчивую двумерную структуру из 105 ионов кальция, удерживаемых монолитной радиочастотной ловушкой Пауля. Им также удалось перевести такой кулоновский кристалл в основное состояние по поперечным колебательным модам, что необходимо для реализации разнообразных протоколов запутывания. Большая трудность, которая встает на пути удержания двумерных массивов паулевой ловушкой — это высокая чувствительность ионов в неточности расположения ее элементов. Для борьбы с этой проблемой, физики использовали монолитный подход, в котором все элементы ловушки остаются частью одного твердого тела, а потому практически не смещаются относительно друг друга. Авторы изготавливали электроды таким образом, чтобы сформировать плоский анизотропный потенциал, из-за чего ионный кристалл принимал эллиптическую форму. Их установка давала лазерным лучам доступ к ионам в широком диапазоне углов, что позволило эффективно проводить манипуляции и визуализацию кристалла. В начале эксперимента физики подвергали лазерной абляции твердотельный кальциевый образец. Они облучали испущенные атомы ионизирующим лучом, после чего ионы попадали в область ловушечных потенциалов, где в течение минуты формировался кристалл. Ученые охлаждали его с помощью метода боковой полосы и метода электромагнитно-индуцированной прозрачности. В качестве кубитов авторы использовали несколько зеемановских подуровней. Для контроля отдельных ионов они фокусировали свет с помощью двухмерного акустооптического дефлектора. Оказалось, что время когерентности в таких кубитах может быть продлено до 370 миллисекунд при том, что сам кулоновский кристалл остается стабильным в течение нескольких секунд даже без лазерного охлаждения. Один из путей масштабирования квантовых вычислений на ионах — использовать кудиты вместо кубитов за счет нескольких уровней. Недавно мы рассказывали, как российские физики объединили два кукварта на основе ионов кальция и продемонстрировали на них универсальный набор квантовых операций.