Американские и индийские ученые собрали и охарактеризовали на трех стандартных растворах спектрофотометр, в котором в качестве источника излучения установлены светодиоды, из-за чего себестоимость устройства составила всего 63 доллара. Хоть спектрофотометр оказался в десятки раз дешевле коммерчески доступных, он не уступил им по чувствительности и точности анализа. Исследование с подробным описанием прибора, схемами электрических цепей и проверок опубликовано в журнале PLoS One.
Спектрофотометры стоят почти в каждой современной лаборатории, которая занимается химическим анализом веществ. Они достаточно дешёвые в сравнении с более сложными приборами и обладают достаточными характеристиками для решения широкого спектра важных задач: определение многих органических, неорганических и лекарственных веществ. Однако в мире немало лабораторий, где цена в две тысячи долларов за такие приборы делает их либо самым дорогим оборудованием в учреждении, либо совсем лишает возможности их приобрести.
Современные спектрофотометры используют вольфрамовые лампы накаливания в качестве источника света в диапазоне от 350 до 2500 нанометров, из которых с помощью относительно сложной системы линз, щелей и дифракционных решеток выделяется почти монохроматическое (одной длины волны) излучение. Это излучение проходит сквозь кювету с анализируемым раствором, частично поглощается в нем и затем попадает на детектор. Доля поглощенного раствором излучения используется для определения концентрации определяемых веществ.
Использование монохроматического излучения необходимо для уменьшения мешающих влияний, которые могут возникать из-за поглощения света примесными веществами в растворе. Относительно дорогие современные спектрофотометры обеспечивают ширину полосы (диапазона длин волн) от четырех до 20 нанометров, тогда как дешевые светодиоды могут излучать свет с шириной полосы от 10 до 60 нанометров в зависимости от выбранного цвета.
Майкл Прерия (Michael Prairie) с коллегами из Норвичского университета заменили лампу накаливания и оптическую систему на светодиоды и создали спектрофотометр себестоимостью в 63 доллара, который можно сделать в условиях лаборатории, обладая базовыми знаниями электроники. Ученые сравнили возможности прибора с четырьмя современными коммерчески доступными спектрофотометрами ценой от двух до восьми тысяч долларов. На примере трех стандартных растворов ионов – железа, марганца и фторида, в различных диапазонах концентраций, часто встречающихся в питьевой воде, исследователи детально определили важнейшие характеристики прибора.
Высший предел концентрации железа, ниже которого сохранялась линейная зависимость сигнала от концентрации, составил от трех до 4,99 миллиграмм в литре. Тогда как коммерчески доступные приборы обеспечивали предел от трех до 6,99 миллиграмм в литре. Аналогично небольшую разницу заметили и в определении верхнего предела линейности других двух растворов, а также незначимыми посчитали разницу в значениях коэффициента детерминации, точности и пределов обнаружения. Однако, наклон калибровочной прямой, который отражает чувствительность прибора к малым изменениям концентрации, оказался сравнимым со значением полученным более дорогими спектрофотометрами только при определении железа. Чувствительность определения марганца и фторида оказались почти в полтора раза хуже.
Авторы утверждают, что описанный спектрофотометр себестоимостью 2,6% цены коммерческих спектрометров обеспечит лаборатории, у которых все еще нет этого универсального прибора, возможностью проводить важные анализы без значимой потери в характеристиках. Так как прибор способен работать от шестивольтной мотоциклетной батареи, его также можно переносить и проводить анализ вне лаборатории.
Прошлой весной американские ученые представили дешевое микрофлюидное устройство из пластмассовой пластинки, которое при помещении в жидкий азот было способно обнаружить подделки некоторых лекарств и масел.
Алина Кротова
Его удалось получить благодаря объемному восьмичленному лиганду
Химики из Германии синтезировали циклические сэндвичевые комплексы стронция, самария и европия с дианионом замещенного циклооктатетраена. В них 18 ионов металла координировались к 18 циклическим углеродным лигандам, образуя одно металлоорганическое кольцо. Как пишут авторы статьи в Nature, их исследование — первая успешная попытка синтеза циклических сэндвичевых соединений. В классических сэндвичевых соединениях (например, в ферроцене) ион металла располагается между двумя циклическими углеродными лигандами, как кусок сыра между двумя ломтиками хлеба. Но существуют сэндвичи, в которых несколько ионов чередуются с несколькими лигандами, образуя многопалубную молекулу. Структура у таких молекул обычно линейная — то есть чередующиеся ионы металла и лиганды образуют вытянутую цепочку. Но если лиганд достаточно большой — эта цепочка может загибаться. Загнуть эту цепочку до предела — образования цикла — удалось химикам под руководством Петера Роески (Peter W. Roesky) из Технологического института Карлсруэ. Для этого они смешали иодид стронция с солью, в которой роль катиона играл калий, а анионом был дважды отрицательно заряженный циклооктатетраен с двумя объемными силильными заместителями. При этом в растворе образовался комплекс стронция с четырьмя лигандами — замещенным циклооктатетраеном и четырьмя молекулами тетрагидрофурана (его использовали в качестве растворителя). Затем, чтобы получить циклический продукт, химики упарили раствор комплекса, а получившийся порошок выкристаллизовали из смеси толуола и тетрагидрофурана. Выросшие монокристаллы ученые исследовали с помощью рентгеноструктурного анализа. Анализ показал, что полученное вещество — это циклический сэндвичевый комплекс, представляющий собой нанокольцо, в котором ионы стронция и анионы циклооктатетраена чередуются друг с другом. Впоследствии такие же комплексы удалось получить и на основе других металлов — европия и самария. Далее, чтобы объяснить неожиданное образование циклов, химики провели квантовохимические расчеты с помощью теории функционала плотности. Они показали, что в этих комплексах связи между лигандами и ионами металлов ионные — то есть, основной вклад в их прочность вносит простое электростатическое взаимодействие между катионами и анионами. Кроме того, расчеты показали, что образование наноколец термодинамически выгодно за счет дополнительных дисперсионных взаимодействий, возникающих только в циклической структуре. Так химики обнаружили новый класс сэндвичевых соединений. Но найти у его первых представителей выдающихся свойств пока не удалось. Сэндвичевые комплексы наиболее характерны для d- и f-элементов. Но недавно мы рассказывали о том, как химики впервые получили сэндвичевые комплексы p-элементов теллура и селена.