Китайские разработчики создали алгоритм, способный синтезировать запись с пением человека на основе записи с его обычной речью, или же выполнять обратную задачу и синтезировать речь на основе пения. Статья с описанием разработки, обучения и тестирования алгоритма опубликована на arXiv.org.
В последние годы развитие нейросетевых алгоритмов для синтеза речи, таких как WaveNet, позволило создать системы, которые достаточно сложно отличить от реальных людей. Например, Google в 2018 году показала голосового помощника для бронирования мест, который умеет не только реалистично говорить, но и вставлять слова, придающие речи правдоподобность, например, «эмм». В результате компании пришлось также научить алгоритм предупреждать в начале разговора, что он не является человеком.
Как и в случае с другими нейросетевыми алгоритмами, успех систем синтеза речи во многом связан не с их архитектурой, а с большим объемом доступных данных для обучения. Создание системы синтеза пения представляет собой похожую на первый взгляд задачу, но на самом деле гораздо сложнее из-за значительно меньшей доступности данных. Многие разработчики систем генерации пения в последнее время шли по пути уменьшения объема необходимых образцов пения конкретного человека для обучения алгоритма, а теперь группа китайских исследователей под руководством Дуна Юя (Dong Yu) из компании Tencent создала систему, которая способна создавать реалистичную аудиозапись с пением, получая на вход только образцы речи.
Алгоритм основан на предыдущей разработке Tencent — нейросети DurIAN, предназначенной для синтеза реалистичных видеороликов с говорящим ведущим на основе текста. Перед DuarIAN в новом алгоритме установлен блок распознавания речи, который создает на основе входящей аудиозаписи фонемы с указанием их продолжительности, а также основные частоты. Эти данные попадают на блок, состоящий из кодировщика и декодировщика, который формирует мел-спектрограмму, которую отдельная нейросеть превращает в аудиозапись. Алгоритм может работать в обе стороны, конвертируя речь в пение и наоборот.
Авторы обучили алгоритм на двух собственных датасетах, состоящих из полутора часов пения и 28 часов речи. После обучения разработчики проверили эффективность алгоритма на 14 добровольцах, которые оценивали реалистичность синтезированного пения и похожесть тембра на исходную запись. В результате один из вариантов алгоритма набрал 3,8 балла по реалистичности и 3,65 по похожести. На сайте авторов опубликованы образцы работы нейросети.
Source Voice | Singing Sample | |
---|---|---|
Female Singer1 | ||
Female Speaker1 | ||
Male Speaker1 | ||
Female Speaker2 | ||
Male Speaker2 | ||
Female Speaker3 | ||
Male Speaker3 |
Многие исследования в области нейросетевых алгоритмов по работе со звуком связаны с музыкой. Например, нейросети уже умеют менять жанр, стиль и инструменты в песнях, а также выполнять более практичные задачи, в том числе дополнять мелодию игрой на барабанах.
Григорий Копиев
Как искусственный интеллект повлияет на то, как мы трудимся
Роботы оставят нас без работы или создадут новые вакансии? Может быть, скоро мы все наконец-то как следует отдохнем, а самые тяжелые обязанности возьмет на себя искусственный интеллект? Разбираемся, что из этого ближе к реальности: как под влиянием ИИ меняется мир работы, насколько оправданы страхи потерять ее из-за новых технологий и на что алгоритмы никогда не будут способны.