80 процентов звезд в широких двойных системах оказались очень похожи в химическом смысле, причем как по общей металличности, так и по множеству отдельных элементов. Полученные результаты доказывают возможность изучения прошлого Млечного Пути по подобным объектам, пишут авторы в препринте на arXiv.org.
Основными компонентами нашей Галактики являются звезды и газ, которые формируют несколько структур, такие как толстый диск, тонкий диск, гало, балдж и некоторые другие. Эти структуры не статичны, а находятся в динамике и претерпевают эволюцию. Исследованием их взаимодействия и развития занимается раздел астрономии под названием галактическая археология, которая позволяет восстановить изменение Млечного Пути с течением времени.
Многие развитые в рамках галактической археологии подходы опираются на точные определения параметров отдельных звезд, то есть их координат, скоростей движения, возрастов, масс и других. В частности, астрономы используют метод химической маркировки звезд, то есть сравнения наблюдаемых концентраций тяжелых элементов в атмосферах светил с модельными распределениями, которые показывают распространение продуктов термоядерного синтеза со временем.
Метод химической маркировки опирается на ряд предположений, причем одно из ключевых, которое заключается в химической однородности родившихся вместе звезд, на данный момент проверено с недостаточной точностью. Если оно все же окажется верным, то таким способом можно будет, например, определять существовавшие в прошлом скопления звезд, разрушившиеся к сегодняшнему дню.
Американские астрономы под руководством Кита Хоукинса (Keith Hawkins) решили экспериментально проверить основу метода химической маркировки. Авторы сконцентрировались на проверке двух принципов: рожденные вместе звезды должны быть похожи по составу и появившиеся в одном месте светила должны отличаться от сформировавшихся в других частях галактики.
В качестве исходных данных ученые взяли информацию о 25 широких двойных, расстояния до которых известны с высокой точностью благодаря космическому телескопу Gaia. Химический состав светил был выявлен во время детальных наблюдений на 2,7-метровом телескопе обсерватории Мак-Доналд. Выбор широких двойных систем, то есть звезд, которые родились из одного газопылевого облака, но находятся на долгопериодических орбитах, обусловлен тем, что они не взаимодействовали в течение жизни, благодаря чему их состав не претерпевал существенных изменений из-за внешних факторов.
Исследователи анализировали как общую металличность звезд (концентрацию всех элементов тяжелее гелия по отношению к водороду в фотосфере), так и обилие 23 отдельных элементов из четырех групп: легкие металлы и элементы с нечетным номером (литий, углерод, натрий, алюминий, скандий, ванадий, медь), альфа-элементы (магний, кремний, кальций), элементы железного пика (титан, хром, марганец, железо, кобальт, никель, цинк) и элементы, формирующиеся в результате нейтронного захвата (стронций, иттрий, цирконий, барий, лантан, неодим, европий).
Оказалось, что 20 из 25 изученных двойных по металличности отличаются не более чем на пять процентов, а другие отличаются примерно на 25 процентов. Изобилия отдельных элементов внутри любой двойной не превышали 20 процентов. Для определения химического отличия звезд двойной от других светил, астрономы сравнивали разницу в концентрациях элементов между случайными объектами выборки. Степень химического родства между компонентами одной системы оказалась намного ближе, чем между звездами из разных двойных.
В будущем астрономы планируют расширить выборку, чтобы детальнее исследовать 20 процентов непохожих двойных. Однако они заключают, что их результаты в целом свидетельствуют в пользу обоснованности метода химической маркировки.
Ранее с помощью методов галактической археологии ученые показали, что столкновение с другой галактикой сделало Млечный Путь толще. Подробнее о таком способе исследования астрономических объектов можно прочитать в тексте «Наследие "Звездного вестника"».
Тимур Кешелава
Экзопланета находится близко к красному карлику AU Микроскопа
Астрономы при помощи телескопа «Хаббл» выявили переменность потери нейтрального водорода атмосферой горячего нептуна, который находится на краю «пустыни нептунов» и обращается по близкой орбите вокруг молодой звезды AU Микроскопа. Предполагается, что это может быть связано с зависимостью оттока газа из атмосферы от активности звезды. Статья опубликована в The Astronomical Journal. «Пустыней нептунов» планетологи называют наблюдаемые дефицит экзопланет размером с Нептун и короткими орбитальными периодами (менее трех дней). Предполагается, что такие планеты изначально представляют собой тела с твердым ядром и обширными газовыми оболочками, которые быстро эволюционируют за счет миграции ближе к звезде и потере атмосферы. Последний процесс, в свою очередь, может протекать в двух вариантах — за счет фотоиспарения атмосферы под действием высокоэнергетического излучения звезды или разогрев и убыль атмосферы за счет выделения тепла со стороны остывающего ядра планеты. Группа астрономов во главе с Китли Рокклиффом (Keighley E. Rockcliffe) из Дартмутского колледжа в Ганновере опубликовала результаты наблюдений за динамикой атмосферы горячего нептуна в системе звезды AU Микроскопа при помощи космического телескопа «Хаббл». AU Микроскопа представляет собой звезду до главной последовательности, которая находится в 31,9 световых года от Солнца. Этот молодой (23 миллиона лет) красный карлик относится к группе Беты Живописца, имеет массу 0,5 масс Солнца, а также обладает околозвездным диском и открытым в 2020 году горячим нептуном AU Mic b, который стал первой молодой экзопланетой с известным значением плотности. AU Mic b характеризуется орбитальным периодом 8,46 дня и радиусом 4,19 радиуса Земли, экзопланета попадает на край «пустыни нептунов» и по расчетам может терять атмосферу. В системе есть еще две более дальние экзопланеты, а также кандидат в четвертую экзопланету. «Хаббл» вел спектроскопические наблюдения за AU Mic b в дальнем ультрафиолетовом диапазоне во время двух событий транзита планеты по диску звезды 2 июля 2020 года и 19 октября 2021 года. В эти моменты излучение водорода в линии Лайман-альфа от родительской звезды с высокой вероятностью будет взаимодействовать с нейтральным водородом, утекающим из верхних слоев атмосферы экзопланеты, и частично поглощаться им, что отразится в спектрах. Влияние околозвездного диска в этих наблюдениях может не учитываться, так как он беден газом. Во время первого транзита следов нейтрального водорода вблизи экзопланеты обнаружено не было, однако во время второго транзита было обнаружено облако водорода, движущееся впереди AU Mic b, со столбцовой плотностью 1013,96 частиц на квадратный сантиметр. Облако превратилось в хвост с длиной 1,39 радиуса Солнца, высотой 0,32 радиуса Солнца, при этом скорость движения части газа увеличилась и составила 61,26 километров в секунду в радиальном направлении от звезды. Ученые предполагают, что такое необычное поведение атмосферы можно объяснить за счет того, что геометрия оттока газа от планеты меняется в зависимости от интенсивности звездного ветра, который формирует из облака хвост, а также зависеть от вспышек на звезде. Кроме того, нейтральный водород мог быть фотоионизирован высокоэнергетическим излучением за 44 минуты, что сделает его временно недоступным для наблюдений. Ранее мы рассказывали о том, как CHEOPS подтвердил открытие двух экзопланет у «долины субнептунов».