Консорциум нескольких физических институтов со всего мира представил детальный план строения установки и целей EuPRAXIA — источника высокоэнергетических электронов и рентгеновского излучения на основе кильватерного ускорения. Ключевыми особенностями EuPRAXIA будут использование инновационных методов ускорения частиц и ориентации на прикладные задачи, в которых установка будет занимать нишу рентгеновских лазеров на свободных электронах, говорится в документе.
EuPRAXIA (European Plasma Research Accelerator with eXcellence In Applications — Европейский плазменный исследовательский ускоритель с выдающимися приложениями) — это международный проект строительства нового ускорительного комплекса с фокусом на прикладные задачи. Установка будет генерировать рентгеновские лучи путем синхротронного излучения высокоэнергетических электронов при их движении в магнитном поле. В этом смысле проект похож на существующие сегодня лазеры на свободных электронах, но важным отличием является способ ускорения частиц: в большинстве существующих сегодня установок используются радиочастотные полости, а в EuPRAXIA предполагается применить кильватерное ускорение.
Кильватерное ускорение заряженных частиц возникает, если специальным воздействием (драйвером) специфически возмутить плазму. При нужных параметрах драйвера легкие электроны успевают сдвинуться, а тяжелые ионы остаются практически на тех же местах, в результате локально создавая огромные градиенты электрического поля, недоступные для получения иными способами. В таком случае можно вслед за драйвером согласованно пустить пучок электронов, которые будут эффективно набирать энергию. В качестве драйвера может выступать сгусток заряженных частиц (протонов или электронов), а также импульс лазерного излучения.
На данный момент кильватерное ускорение используется только в экспериментальных установках. В них удалось достичь градиентов накопления энергии на уровне 100 гигаэлектронвольт на метр, что примерно в тысячу раз больше, чем у высокочастотных резонаторов, которые применяются, в том числе, в Большом адронном коллайдере. Однако крупных установок ни научного, ни прикладного плана пока не существует.
Сводный отчет проекта EuPRAXIA был завершен в октябре, но до сих пор не был официально анонсирован участниками коллаборации из 30 институтов, в которую также входя два российских — Институт прикладной физики РАН и Объединенный институт высоких температур РАН. В документе говорится, что ученые в качестве драйверов кильватерного ускорителя рассматривают как лазерные импульсы, так и электроны.
На выходе будут получаться пучки электронов с энергией от одного до пяти гигаэлектронвольт, которые можно использовать для медицинской диагностики, генерации позитронов и изучения материалов. Однако основным применением будет генерация рентгеновского излучения по схеме лазеров на свободных электронах, но размер установки будет в разы меньше: ученые оценивают минимум шестикратную экономию суммарной площади.
Проект не фиксирует окончательный вариант EuPRAXIA, а предоставляет анализ нескольких возможных вариантов. Ускоритель минимального масштаба, который будет использовать только один вид драйвера, обойдется примерно в 70 миллионов евро. Наиболее дорогим оказывается проект строительства в разных местах двух отдельных установок, специализирующихся на разных типах драйверов. В таком случае физики оценивают стоимость на уровне 320 миллионов евро. Также нет определенности в месте строительства. Основным вариантом называется итальянский Национальный институт ядерной физики недалеко от Рима, но также рассматривается Национальный оптический институт в Пизе, лазерный центр под Прагой в Чехии и Лаборатория Резерфорда — Эплтона в Великобритании.
Ранее в этом году был установлен новый рекорд лазерно-плазменного ускорения электронов — электроны приобрели энергию свыше восьми гигаэлектронвольт на дистанции всего в 20 сантиметров. Также в этом году удалось добиться рекордного ускорения электронов терагерцовым импульсом.
Тимур Кешелава
В магнитном поле образец поглощал и излучал разную энергию
Тело может излучить больше энергии, чем поглотить. Это противоречит закону излучения, однако именно такой результат получили американские физики. Теперь, по словам ученых, можно будет создать устройства, которые более эффективно используют солнечную энергию