Новый термоэлектрик оказался в два раза эффективнее предшественников

B. Hinterleitner et al. / Nature, 2019
Ученые нашли семейство веществ с необычайно высокой термоэлектрической эффективностью, то есть способностью превращать тепловую энергию напрямую в электричество. Самое высокое значение оказалось у соединения Fe2V0.8W0.2Al: оно более чем в два раза превышало предыдущие рекорды. Однако оценка параметра проводилась косвенным методом, а само изученное вещество метастабильно, что делает маловероятным широкомасштабные применения конкретно этого материала, пишут авторы в журнале Nature.
Термоэлектрики — это вещества, в которых возникает электрический ток при создании разностей температуры на противоположных сторонах тела. Ненулевой термоэлектрический эффект характерен практически для любых материалов, но в абсолютном большинстве случаев он слишком мал для практического применения. Однако характеристики даже самых лучших современных термоэлектриков, таких как теллурид висмута(III), позволили им стать востребованными лишь в некоторых областях. Вместе с тем потенциал у таких соединений огромен, так как функционирование многих устройств приводит к выделению тепловой энергии, которая обычно рассеивается, а не используется.
Создаваемый термоэлектриками ток зависит от разности температур и коэффициента термоэлектрической эффективности ZT, который зависит от других параметров вещества: ZT = (S2/ρλ) × T, где S, ρ и λ — это коэффициент Зеебека, электрическое сопротивление и коэффициент теплопроводности, соответственно, а T — это температура, при которой соответствующие свойства измеряются. До недавнего времени рекордные значения ZT находились в диапазоне 2,5–2,8.
Входящие в выражение для термоэлектрической эффективности величины не являются независимыми, поэтому их невозможно оптимизировать по отдельности: при улучшении одного показателя скорее всего ухудшится другой. Единственная характеристика, которую можно менять относительно свободно, — это фононная составляющая теплопроводности, которая вместе с электронной определят всю величину. Известно, что уменьшение размеров и размерностей систем уменьшает подвижность фононов и, следовательно, улучшает термоэлектрическую эффективность, поэтому многие исследования направлены на поиск новых материалов среди тонких пленок.
В работе физиков из Австрии, Китая и Японии под руководством Эрнста Байера (Ernst Bauer) из Венского технического университета описано изучение термоэлектрических свойств тонких пленок из веществ с составом Fe2V1−xWxAl. Наилучшие показатели оказались у Fe2V0.8W0.2Al. Для него в экспериментах были измерены входящие в формулу для ZT величины, из которых была вычислена сама эффективность. Она оказалась на уровне 5–6 в зависимости от условий проведения опытов и с учетом ошибок измерений.
Авторы отмечают, что данная разработка вряд ли перевернет область термоэлектриков, так как нужная структура стабильна только в виде пленки на субстрате, что не позволяет ей преобразовывать большие количества энергии. Однако такой элемент можно встраивать в электронику для питания сенсоров и других устройств. Также исследование показывает потенциал термоэлектриков и возможный путь для открытия новых веществ с рекордными свойствами.
Ранее ученые показали краску-электрогенератор, увеличили эффективность превращения тепла в электричество при помощи фракталов, а также нашли нетоксичный термоэлектрик для комнатной температуры.
Тимур Кешелава