Испанские ученые вырастили мышей с аномально длинными теломерами. Оказалось, что такие мыши не только живут дольше обычных животных, но и отличаются завидным здоровьем: у них меньше содержание жира в теле, выше чувствительность к инсулину и меньше старых клеток в тканях. Можно было ожидать, что сверхдлинные теломеры спровоцируют развитие опухолей — но и они встречались у экспериментальных животных в два раза реже, чем у их сверстников из контрольной группы. Примечательно, что всех этих эффектов исследователи добились без генетических манипуляций. Работа опубликована в журнале Nature Communications.
Укорочение теломер — концевых участков ДНК — считается одним из ключевых признаков старения. Когда теломеры достигают критической длины, клетка перестает размножаться и становится сенесцентной, то есть дряхлой. Этот процесс, судя по всему, лежит в основе истощения клеточных запасов в ткани — когда клетки неспособны делиться, они не могут и заделывать повреждения в ткани.
Справиться с укорочением теломер можно было бы с помощью теломеразы — фермента, который активен в эмбриональных и взрослых стволовых клетках и надстраивает концы хромосом. Существуют даже препараты, которые активируют теломеразу во взрослом организме, однако их клинический эффект пока крайне неоднозначен. Тем не менее, ученые опасаются того, что избыточная активность теломеразы и не в меру длинные хромосомы могут вызвать развитие опухолей. По крайней мере, длина теломер у взрослых людей коррелирует не только с продолжительностью жизни, но и с частотой возникновения некоторых типов рака.
Чтобы оценить вред от длинных теломер, Мигель Муньос-Лоренте (Miguel A. Muñoz-Lorente) и его коллеги из Испанского национального центра создали линию мышей со сверхдлинными теломерами. Для этого они использовали метод, который разработали еще несколько лет назад.
Тогда ученые выяснили, что теломераза особенно активна в эмбриональных стволовых клетках, которые составляют зародыш на стадии нескольких дней, а потом, по мере дифференцировки клеток, ее работа постепенно сходит на нет. Исследователи забирали у зародышей мыши эмбриональные стволовые клетки и выращивали их в культуре, не давая превращаться в разные клеточные типы. При этом теломераза продолжала работать, пока теломеры не стали в два раза длиннее, чем в среднем у мышей.
Сейчас же исследователи взяли стволовые клетки со сверхдлиными теломерами и ввели их в обычные зародыши мышей. Клетки пометили зеленым флуоресцентным белком, чтобы отличать их от клеток реципиента. И оказалось, что из таких зародышей могут вырасти химерные мыши: плацента и зародышевые оболочки у них состоят из тканей реципиента, а вот сам эмбрион и будущая мышь полностью построены из флуоресцентных клеток с длинными теломерами.
Авторы работы проследили за жизнью таких мышей с рождения и до смерти. Первое, на что они обратили внимание — это комплекция этих мышей: они были существенно стройнее своих сородичей. Оказалось, что дело в проценте жира: мышечная масса у контрольных и экспериментальных животных не различалась, а вот толщина подкожного слоя и общее количество жира в теле у вторых было заметно ниже.
Исследователи проверили, насколько стройность мышей сказалась на их здоровье. Они обнаружили, что в крови мышей с длинными теломерами в два-три раза меньше липопротеинов низкой плотности — так называемого «плохого холестерина». Кроме того, экспериментальные мыши были более чувствительны к инсулину и быстрее справлялись с повышением количества глюкозы в крови.
Как и следовало ожидать, длинные теломеры продлили мышам и жизнь в целом: среднюю продолжительность жизни — на 13 процентов, а максимальную — на 8. А вот риск развития опухолей при этом не вырос: у экспериментальных мышей рак встречался в два раза реже, чем у контроля. Умирали же эти животные в основном из-за других возрастных болезней, например, инфекций матки.
Затем авторы работы проверили, что происходит в тканях у взрослых экспериментальных мышей. Они обнаружили, что теломеры у них в любом возрасте длиннее, чем у контрольной группы — пусть не в два раза, но на 25-50 процентов. При этом теломераза во взрослых клетках не работала — то есть длинные теломеры они сохранили еще с зародышевого периода. Других примет старения ученые тоже нашли меньше, чем в контроле — клетки с поврежденной ДНК или признаками старости у экспериментальных животных встречались в несколько раз реже.
Таким образом, исследователи развеяли опасения своих коллег о том, что длинные теломеры могут повлечь за собой негативные последствия для здоровья млекопитающих. Показательно и то, что удлинить мышам теломеры они смогли без каких бы то ни было генетических манипуляций — просто увеличив период, который эмбриональные клетки проводят в стволовом состоянии. На данный момент, конечно, сложно себе представить, как это можно было бы применить к человеку, однако сам факт того, что теломеры можно удлинить негенетическим путем и продлить таким образом жизнь, выглядит обнадеживающим.
Раньше ученые обнаружили, что теломеры страдают от внутриклеточных стрессов сильнее, чем вся остальная ДНК, потому что свободные радикалы атакуют их в первую очередь. А также, изучив динамику теломер у разных млекопитающих, пришли к выводу, что значение имеет не общая их длина, а скорость, с которой они теряются.
Полина Лосева
И отползли от источника звука
Группа исследователей из Китая, США и Южной Кореи выяснила, что нематоды Caenorhabditis Elegans, которые чувствуют звук всем телом, реагируют не на абсолютное звуковое давление, а на его градиент. Из-за этого они способны различать и избегать звуки, которые издают небольшие беспозвоночные хищники, но не реагируют на более громкий шум. Кроме того, такой механизм восприятия градиента звукового давления, по-видимому, общий для многих животных, включая других беспозвоночных и млекопитающих. Работа опубликована в Current Biology. У нематод Caenorhabditis Elegans, как и у многих беспозвоночных, нет органов слуха, но они могут чувствовать звук и уползать от него, то есть проявлять отрицательной фонотаксис. В 2019 году Адам Илифф (Adam Illiff) из Мичиганского университета с коллегами показали, что звуковые вибрации черви ощущают всем телом, а их наружные покровы — кутикула — работают примерно как барабанная перепонка позвоночных. Тогда ученые определили механосенсорные нейроны червей, которые, вероятно, преобразуют звуковые волны в нервный импульс. И выяснили, что воспринимают черви именно колебания воздуха: мутанты, которые не чувствовали вибрацию субстрата, все равно проявляли фонотаксис. Теперь Цань Ван (Can Wang) из Хуачжунского университета науки и технологий (он принимал участие и в прошлом исследовании) и его коллеги из Китая, США и Южной Кореи выяснили, как именно нематоды чувствуют звук. Они размещали рядом с головой нематод динамики разных размеров и включали звуки разной громкости и частоты. Когда ученые помещали маленький динамик диаметром 0,5 миллиметра на расстоянии одного миллиметра от головы нематоды (что примерно равняется длине тела червя), и включали на нем звук частотой 1 килогерц и громкостью 80 децибел, черви разворачивались и ползли в противоположную от звука сторону. Но когда этот динамик заменили на больший, диаметром 3 миллиметра, нематоды не реагировали, хотя звук был таким же. Даже когда громкость увеличивали до 110 децибел или меняли частоту на большую или меньшую, нематоды не меняли траекторию своего движения. Исследователи обнаружили, что кутикула червей вибрирует сильнее всего от звука из маленького динамика. С помощью кальциевой визуализации авторы оценили активность механосенсорных нейронов, которые и реагируют на звуковые колебания. Их активность уменьшалась с увеличением размера динамика, даже если громкость звука была одинаковой. На звук из трехмиллиметрового динамика нейроны червей не реагировали. Также ученые выяснили, что звук из маленького динамика создает наибольший градиент звукового давления в теле нематод — это измерили с помощью миниатюрного микрофона. Давление звука, проходящего через среду, снижается с течением времени, — и в голове червя, которая ближе всего к динамику, оно выше, чем на конце его тела. Если источник звука небольшой, звуковое давление уменьшается быстрее, и таким образом градиент звукового давления по телу червя получается больше. Чтобы изменить звуковой градиент, авторы размещали динамики на разном расстоянии от головы червя — чем ближе был динамик, тем резче градиент. Абсолютное звуковое давление в области головы нематод тем временем не менялось. Черви демонстрировали наиболее устойчивые слуховые реакции только в ответ на резкий градиент. Градиент звукового давления коррелировал и с движением червей, и с вибрацией кутикулы, и с активностью механосенсорных нейронов. Нематоды живут в гниющих листьях на земле, где им могут повстречаться разные беспозвоночные хищники. По всей видимости, именно их звуки — стрекотание, шуршание или шелест крыльев — и могут слышать черви, а вот более громкие звуки от источников большего размера для них не так важны. Градиент звукового давления возникает и в тимпанальных органах кузнечиков, и в заполненной жидкостью улитке млекопитающих. В случае последних этот градиент, по всей видимости, необходим, чтобы активировались механочувствительные волосковые клетки улитки. То есть активация чувствительных к звуку нейронов происходит у разных животных по одному принципу. Ранее ученые обнаружили, что эпигенетическая память позволила нематодам C. elegans избегать патогенных бактерий даже спустя четыре поколения. То есть одни черви встретились с бактерией, выяснили, что она опасна, и стали ее избегать, а их детям и внукам уже не потребовалось проверять бактерий на себе — они избегали их сразу благодаря унаследованным модификациям гистонов.