Американские генетики просканировали почти десять тысяч геномов пациентов с пороками развития в поисках следов ретротранспозонов — мобильных генетических элементов. Они обнаружили, что ретротранспозоны чаще встраиваются в некодирующие части генов, чем в кодирующие. Тем не менее, в «осмысленных» участках генов они нашли 11 новых мутаций, которые были связаны с мобильными элементами, а в трех случаях подтвердили, что именно они стали причиной пороков развития. Работа опубликована в журнале Nature Communications.
Ретротранспозоны — это единственные мобильные генетические элементы, которые способны не только передвигаться по геному, но и копировать себя. Выглядит это следующим образом: с ДНК мобильного элемента клетка считывает РНК, а на основе РНК строит белки. Один из этих белков — обратная транскриптаза — строит на базе РНК ретротранспозона новую ДНК, фактически его копию. Затем эта копия встраивается в геном клетки, причем не туда, где находится оригинал мобильного элемента, а в случайное место. При этом она может разрушить какой-нибудь ген, создав в нем мутацию.
Кроме того, иногда ретротранспозон может размножить не только себя. Ревертаза «по ошибке» может превратить в ДНК какую-нибудь другую клеточную РНК. Затем эта РНК также встраивается в геном клетки, создавая тем самым новую копию гена в случайном участке ДНК. Однако такой ген, как правило, не работает — клетка не может считать с него информацию — поэтому его называют процессированным псевдогеном.
Известно, что такие «прыжки» ретротранспозонов по ДНК могут вызывать разные генетические заболевания — например, некоторые типы гемофилии и мышечной дистрофии. Однако поскольку вероятность каждого такого «попадания» мала, то мутации, вызванные мобильными элементами, не проверяют в ходе обычных генетических обследований. И люди с пороками развития, которые спровоцированы ретротранспозонами, могут остаться без корректного диагноза.
Юджин Гарднер (Eugene Gardner) и его коллеги из Института Wellcome Sanger решили оценить, какой вклад вносят ретротранспозоны в появление пороков развития. Для этого они обратились к данным проекта Deciphering Developmental Disorders, который собрал геномы тысяч пациентов с врожденными аномалиями развития. Из них исследователи отобрали 9738 семей из трех человек (ребенок–родители) и сравнивали их геномы в поисках новообразованных мутаций, в которых виноваты мобильные элементы.
Всего ученые обнаружили 1129 разных следов вставок ретротранспозонов и 576 псевдогенов. У каждого человека в отдельности они нашли в среднем 33 такие мутации. Большинство из них оказали редкими — встречались менее, чем у четырех неродственных людей.
При этом в экзонах — «осмысленных» частях генов — вставок оказалось меньше, чем в «бессмысленных» интронах. Исследователи предположили, что мутации в экзонах подвергаются давлению отбора, поэтому отсеиваются гораздо чаще — так же, как и другие типы мутаций (например, однонуклеотидные вариации).
Среди всех 9738 детей с пороками развития исследователи обнаружили всего 11 новых мутаций, вызванных ретротранспозонами — то есть тех, которых не было в геноме родителей. Из них 9 были вставками мобильных элементов и 2 — новыми псевдогенами. Ученые проверили, в каких генах возникли эти мутации и обнаружили, что в 4 случаях они затронули гены, которые часто связывают с пороками развития. В 3 из них лечащие врачи пациентов подтвердили, что мутация лежит в основе заболевания: например, у ребенка с синдромом Сотоса (это разновидность гигантизма, который часто сопровождается умственной отсталостью). Еще в одном случае мутация возникла в гене, который не связан напрямую с симптомами пациента — излишним весом и полидактилией — но врачи не исключают, что мутация могла внести свой вклад в развитие болезни.
По подсчетам авторов статьи, ретротранспозоны вносят небольшой вклад в распространение пороков развития — ими можно объяснить в среднем 1 из 2324 случаев. Тем не менее, на такие мутации тоже важно обращать внимание, поскольку они помогают поставить точный диагноз — а он, в свою очередь, необходим, чтобы родители пациента могли обратиться в группы поддержки для людей с редкими заболеваниями и получить помощь от государства или фондов.
Внимание исследователей в этот раз было приковано к мутациям в экзонах. Однако мутации в интронах под действием ретротранспозонов происходят гораздо чаще, а их вклад в возникновение пороков развития остается неизученным. В то же время, мутации в интронах тоже могут нарушать работу гена — недавно мы рассказывали историю девочки Милы, у которой «прыжок» ретротранспозона привел к развитию нейродегенеративной болезни и которую пришлось лечить суперперсонализированным генетическим препаратом.
Полина Лосева
Это облегчило симптомы поражения мышц и нервов
Выращивание дрозофил с дефектом первого комплекса дыхательной цепи в среде с комбинацией 5-аминолевулиновой кислоты, гидрохлорида и железа натрия цитрата (5-ALA-HCl + SFC) увеличивает выработку АТФ за счет повышения активности второго и четвертого дыхательных комплексов. Активность первого комплекса при этом не меняется. Кроме того, у дрозофил снижалось накопление лактата и пирувата, которое происходит при дефекте первого комплекса, что, по-видимому, облегчало симптомы поражения мышц и нервов. Исследование опубликовано в Human Molecular Genetics. В митохондриях происходит окислительное фосфорилирование — многоэтапный процесс, в ходе которого окисляются восстановительные эквиваленты — восстановленные никотинамидадениндинуклеотид (НАДН) и флавинадениндинуклеотид (ФАДН2), — и вырабатывается АТФ. Происходит последовательный перенос электронов по дыхательной цепи — группе дыхательных ферментов в мембране митохондрии. Всего в цепи участвует пять комплексов дыхательных ферментов. Нарушение переноса электронов по дыхательной цепи сопровождается снижением выработки АТФ и вызывает митохондриальные заболевания. Наиболее часто «ломается» первый комплекс — НАДН-КоQ-оксидоредуктаза, или НАДН-дегидрогеназа. Его дефицит поражает органы и ткани с высокими энергетическими потребностями, таких как мозг, сердце, печень и скелетные мышцы. Обычно это проявляется тяжелыми неврологическими синдромами: например, наследственная оптическая нейропатия Лебера, синдром MELAS или синдром MERRF. Хотя первый комплекс отвечает за поступление наибольшего количества электронов в дыхательную цепь, второй комплекс — ФАД-зависимые дегидрогеназы, — работая параллельно с первым, также отвечает за вход электронов в цепь, передавая их, как и первый комплекс на убихинон (коэнзим Q). Потенциально повышение активности второго комплекса могло бы нивелировать снижение активности первого. Поскольку второй, третий и четвертый дыхательные комплексы и цитохром с содержат гемовые структуры, команда ученых под руководством Канаэ Андо (Kanae Ando) из Токийского столичного университета решили проверить, насколько эффективно будет применение предшественника гема 5-аминолевулиновой кислоты для повышения активности этих комплексов и восстановления синтеза АТФ у дрозофил с дефектом первого комплекса. Сначала ученые отключили у дрозофил ген, гомологичный NDUFAF6 и ответственный за экспрессию одного из регуляторных белков первого комплекса. У таких дрозофил мышцы были тоньше, хрупче и иннервировались хуже, чем у насекомых без нокдауна гена. Кроме того, самцы с неработающим геном погибали намного быстрее самок, и у них развивались более грубые нарушения опорно-двигательного аппарата. Затем ученые проанализировали как нокдаун гена первого комплекса влияет на экспрессию и активность других комплексов. Выяснилось, что нокдаун увеличивает экспрессию генов третьего и пятого комплексов, и снижает — четвертого. При этом активность второго и четвертого комплекса значительно повышалась после нокдауна у самок дрозофил. Ученые не обнаружили нарушений в процессах утилизации активных форм кислорода, однако у дрозофил обоих полов без работающего гена первого комплекса накапливался лактат и пируват. Чтобы проверить влияние комплекса 5-аминолевулиновой кислоты, гидрохлорида и железа натрия цитрата (5-ALA-HCl + SFC) на митохондрии дрозофил с нокаутированным геном, их выращивали в среде, содержащей этот комплекс. Такое воздействие значительно повышало уровни АТФ у самцов и самок дрозофил, при этом количество копий митохондриальной ДНК не изменялось, то есть препарат не увеличивал количество митохондрий. Экспрессия и активность дефектного первого комплекса никак не изменились, а активность второго и четвертого комплексов выросли у самцов. В целом, повышенная экспрессия генов третьего комплекса и активность второго и четвертого комплексов смягчали дефектные фенотипы. Помимо этого 5-ALA-HCl + SFC снижало накопление лактата и пирувата у самцов и самок с нокдауном гена первого комплекса, что потенциально смягчает метаболические нарушения, вызванные дефицитом первого комплекса. У самцов и самок мух-дрозофил, которых лечили 5-ALA-HCl + SFC, наблюдалось меньше дефектов опорно-двигательного аппарата, а продолжительность их жизни значительно увеличилась. Ученые рассчитывают проверить эффект такого лечения на животных с более сложным строением, чтобы подтвердить универсальность такого подхода к лечению митохондриальных нарушений. Не всегда нужна мутация, чтобы нарушить работу дыхательной цепи. Недавно мы рассказывали про то, что большое количество натрия из потребляемой соли нарушает дыхательную цепь митохондрий в регуляторных Т-лимфоцитах. Это приводит к активации аутоиммунных процессов.