Ученые представили новый способ управляемого перемещения микро- и наночастиц, основанный на эффекте электроадгезии нанотрубок, то есть изменения силы сцепления нанотрубок и частиц в зависимости от приложенного электрического напряжения. Этот принцип позволяет работать как с металлическими, так и с диэлектрическими телам, а технологическое применение метода на его основе может привести к дальнейшей миниатюризации электроники, так как в данный момент этот процесс сдерживается, в том числе, сложностью уменьшения роботизированных захватов, пишут авторы в журнале Science Advances.
Современные электронные устройства состоят из огромного количества крошечных элементов, которые с высокой точностью необходимо разместить в нужных местах на плате. Сегодня миниатюризация компонентов достигла масштаба крупинок муки. Например, самые современные светодиоды для дисплеев могут быть до нескольких микрон в размере.
Во многих случаях эти детали перемещаются специальными механическими или вакуумными захватами. Однако по мере сокращения размеров устройств данные способы удержания становятся все менее эффективными, так как в микромире гравитация убывает с уменьшением тел быстрее, чем поверхностные силы Ван-дер-Ваальса. В результате механические микроманипуляторы не справляются самостоятельно с размещением деталей на расчетных местах и нуждаются в дополнительном усилии, которым обычно является адгезия подложки.
В работе американских ученых под руководством Джона Харта (John Hart) из Массачусетского технологического института описан способ управления адгезией подложки, состоящей из неплотного леса покрытых диэлектрической керамикой углеродных нанотрубок. Созданное авторами на основе данного принципа устройство позволяет манипулировать объектами размером вплоть до 20 нанометров.
Приложение электрического напряжения временно поляризует диэлектрическую оболочку нанотрубок, что увеличивает адгезию, за которую в данном случае отвечает электростатика, более чем стократно. В результате лес нанотрубок, который в норме примерно в 40 раз менее «липкий», чем большинство других твердых тел, образует в разы более сильную связь при приложении 30 вольт. Соответствующая измеренная в эксперименте сила для площадки 200 на 200 микрон составила 2,3 микроньютона. Снятие напряжения вызывало резкое уменьшение адгезии.
Продемонстрированный размер захватываемых частиц намного меньше возможностей современных механических манипуляторов, которые с трудом справляются с перемещением тел менее 50 микрон. Также ученые отмечают, что эффект электроадгезии уже используется в некоторых промышленных технологиях для перемещения крупных объектов, таких как ткани или кремниевые пластины. Однако этот принцип никогда ранее не применялся для микроскопических тел.
Ранее этот же коллектив ученых продемонстрировал печать электронных схем с использованием нанотрубок. Также физики раскрыли «двуличность» углеродных нанотрубок и смогли их охладить постоянным током до квантового режима.
Тимур Кешелава
Для этого он снимал на видео и моделировал работу этой игрушки
Американский физик экспериментально и теоретически исследовал вращение нити в стрингшутере — игрушке, в которой небольшие вращающиеся колеса формируют в воздухе стабильные нитевые петли. Построенная ученым модель хорошо объяснила опыт и при этом оказалась достаточно простой, чтобы использовать ее на занятиях по механике. Исследование опубликовано в The Physics Teacher. Стрингшутер (иногда струнный шутер) — это игрушка, представляющая собой длинную замкнутую нить, вращающуюся вдоль своей длины под действием управляющих колесиков или валов подобно лассо. Замечательная особенность стрингшутера в том, что при правильных условиях в воздухе образуется стабильная веревочная петля, по которой можно запускать волны. Этот факт привлек внимание физиков сравнительно недавно и получил удовлетворительное математическое объяснение. Вместе с тем, игрушка могла бы стать хорошим дидактическим материалом при изучении физики, поэтому было бы полезно построить достаточно простую теорию, описывающую петлю, но в то же время объясняющую эксперимент. Сделать это удалось Карлу Мамола (Karl Mamola) из Аппалачского университета. Он записал систему простых уравнений для петли стрингшутера и численно решил их, сравнив результат с вращением нити в настоящей игрушке, а также показал, откуда возникает ее устойчивость. Чтобы двигающаяся петля оставалась в равновесии, необходимо, чтобы была равна нулю не только действующая на нее равнодействующая сила, но и полный момент сил. Особенность игрушки в том, что колеса не создают такого момента, поскольку прилагаемая ими сила имеет нулевое плечо. Аэродинамической подъемной силы в этом случае также не возникает из-за того, что воздушный поток вокруг нити симметричный. Вместо этого воздух создает силу сопротивления, зависящую от скорости. А поскольку модуль скорости постоянен вдоль нити, то таким же свойством обладает и сила сопротивления. Ее интегральное действие на всю петлю формирует момент сил, направленный противоположно гравитационному моменту и обеспечивающий равновесие. С учетом этого факта физик рассмотрел бесконечно малый участок нерастяжимой и абсолютно гибкой нити и записал для него второй закон Ньютона для движения и вращения. Численное интегрирование этих уравнений способно восстановить форму петли, для чего ученому нужны были какие-то конкретные параметры петли. Он взял их из эксперимента с реальной игрушкой, произведенной фирмой LoopLasso, с нитью стрингшутера длиной 3,08 метра и массой 2,72 грамма и диаметром колес 2,7 сантиметра. Боковая фотография нити и ее последующая оцифровка позволили получить координаты участков петли и ее общие параметры: размер, угол запуска и угол возврата. Также физик пометил один из участков нити маркером, что позволило вычислить скорость нити по видео — она составила 7,5 метра в секунду. Автор использовал добытые параметры в моделировании. Единственную неизвестную величину — коэффициент сопротивления — он извлек из подгонки с наилучшим соответствием. Результаты моделирования оказались в хорошем согласии с опытом. Отклонения наблюдались только в области большой кривизны — физик связал это с невыполнением требования абсолютной гибкости. На основе развитой модели он также показал, что момент силы тяжести уравновешивается сопротивлением воздуха вдоль всей нити. Ранее мы рассказывали, как физики объясняют механику других повседневных вещей и явлений: падения бутерброда маслом вниз, живучесть кошек при падении с высоты и переноску чашки с кофе.